Quantum reservoir computing is a neuro-inspired machine learning approach harnessing the rich dynamics of quantum systems to solve temporal tasks. It has gathered attention for its suitability for NISQ devices, for easy and fast trainability, and for potential quantum advantage. Although several types of systems have been proposed as quantum reservoirs, differences arising from particle statistics have not been established yet. In this work, the ability of bosons, fermions, and qubits are assessed and compared to store information from past inputs by measuring linear and nonlinear memory capacity. While, in general, the performance of the system improves with the Hilbert space size, it is shown that also the information spreading capability is a key factor. For the simplest reservoir Hamiltonian choice, and for each boson limited to at most one excitation, fermions provide the best reservoir due to their intrinsic nonlocal properties. On the other hand, a tailored input injection strategy allows the exploitation of the abundance of degrees of freedom of the Hilbert space for bosonic quantum reservoir computing and enhances the computational power compared to both qubits and fermions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.