Activity-based protein profiling (ABPP) is a functional proteomics technique for directly monitoring the expression of active enzymes in cell extracts and living cells. The technique relies on irreversible inhibitors equipped with reactive groups (warheads) that covalently attach to the active site of enzymes and fluorescent or affinity tags for imaging and purification purposes, respectively. Here, a high-throughput and robust protocol for high-resolution quantitative activity-based proteasome profiling is described. We use both panreactive and subunit-specific fluorescent activity-based probes (ABPs) to quantify the proteasome activity in living cells, in the presence or absence of the potent proteasome inhibitor bortezomib. Active proteasome subunits from cell lysates are affinity-purified via a biotinylated ABP. Purification from live cells involves a two-step ABP approach using a reagent with a cell-permeable azide-warhead and postlysis installation of biotin. By means of liquid chromatography-mass spectrometry (LC-MS)-based proteomics, we can accurately identify the enriched proteins and the active site peptides of the enzymes, and relatively quantify all the proteasome activities in one experiment. The fluorescence ABPP protocols takes 2-3 d, and approximately 8-10 d are needed to complete the entire protocol.
The kinase suppressor of rat sarcoma (RAS) proteins (KSR1 and KSR2) have long been considered as scaffolding proteins required for optimal mitogen‐activated protein kinase (MAPK) pathway signalling. However, recent evidence suggests that they play a more complex role within this pathway. Here, we demonstrate that ectopic expression of KSR1 or KSR2 is sufficient to activate the MAPK pathway and to induce cell proliferation in the absence of RAS proteins. In contrast, the ectopic expression of KSR proteins is not sufficient to induce cell proliferation in the absence of either rapidly accelerated fibrosarcoma (RAF) or MAPK‐ERK kinase proteins, indicating that they act upstream of RAF. Indeed, KSR1 requires dimerization with at least one member of the RAF family to stimulate proliferation, an event that results in the translocation of the heterodimerized RAF protein to the cell membrane. Mutations in the conserved aspartic acid–phenylalanine–glycine motif of KSR1 that affect ATP binding impair the induction of cell proliferation. We also show that increased expression levels of KSR1 decrease the responsiveness to the KRASG12C inhibitor sotorasib in human cancer cell lines, thus suggesting that increased levels of expression of KSR may make tumour cells less dependent on KRAS oncogenic signalling.
In mammals, the KRAS locus encodes two protein isoforms, KRAS4A and KRAS4B, which differ only in their C terminus via alternative splicing of distinct fourth exons. Previous studies have shown that whereas KRAS expression is essential for mouse development, the KRAS4A isoform is expendable. Here, we have generated a mouse strain that carries a terminator codon in exon 4B that leads to the expression of an unstable KRAS4B154 truncated polypeptide, hence resulting in a bona fide Kras4B-null allele. In contrast, this terminator codon leaves expression of the KRAS4A isoform unaffected. Mice selectively lacking KRAS4B expression developed to term but died perinatally because of hypertrabeculation of the ventricular wall, a defect reminiscent of that observed in embryos lacking the Kras locus. Mouse embryonic fibroblasts (MEFs) obtained from Kras4B−/− embryos proliferated less than did wild-type MEFs, because of limited expression of KRAS4A, a defect that can be compensated for by ectopic expression of this isoform. Introduction of the same terminator codon into a KrasFSFG12V allele allowed expression of an endogenous KRAS4AG12V oncogenic isoform in the absence of KRAS4B. Exposure of Kras+/FSF4AG12V4B– mice to Adeno-FLPo particles induced lung tumors with complete penetrance, albeit with increased latencies as compared with control Kras+/FSFG12V animals. Moreover, a significant percentage of these mice developed proximal metastasis, a feature seldom observed in mice expressing both mutant isoforms. These results illustrate that expression of the KRAS4AG12V mutant isoform is sufficient to induce lung tumors, thus suggesting that selective targeting of the KRAS4BG12V oncoprotein may not have significant therapeutic consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.