Conducting polymer hydrogels have been prepared using PEDOT:PSS and partially replacing PSS dopant by alginate. The selected hydrogel, which is self-healable and re-utilizable, has been used as pressure sensor with good spatial resolution.
Stimuli-responsive biomaterials have attracted significant attention for the construction of on-demand drug release systems. The possibility of using external stimulation to trigger drug release is particularly enticing for hydrophobic compounds, which are not easily released by simple diffusion. In this work, an electrochemically active hydrogel, which has been prepared by gelling a mixture of poly(3,4ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) and alginate (Alg), has been loaded with curcumin (CUR), a hydrophobic drug with a wide spectrum of clinical applications. The PEDOT/Alg hydrogel is electrochemically active and organizes as segregated PEDOT-and Alg-rich domains, explaining its behaviour as an electroresponsive drug delivery system. When loaded with CUR, the hydrogel demonstrates a controlled drug release upon application of a negative electrical voltage.Comparison with the release profiles obtained applying a positive voltage and in absence of electrical stimuli, indicates that the release mechanism dominating this system is complex due not only to the intermolecular interactions between the drug and the polymeric network but also to the loading of a hydrophobic drug in a water-containing delivery system.
The rapidly rising demand for therapeutic grade DNA molecules requires associated improvements in encapsulation and delivery technologies. One of the challenges for the efficient intracellular delivery of therapeutic biomolecules after their cell internalization by endocytosis is to manipulate the non-productive trafficking from endosomes to lysosomes, where degradation may occur. The combination of the endosomal acidity with the endosomolytic capability of the nanocarrier can increase the intracellular delivery of many drugs, genes and proteins, which, therefore, might enhance their therapeutic efficacy. Among the suitable compounds, the gelification properties of gelatin as well as the strong dependence of gelatin ionization with pH makes this compound an interesting candidate to be used to the effective intracellular delivery of active biomacromolecules. In the present work, gelatin (either high or low gel strength) and protamine sulfate has been selected to form particles by interaction of oppositely charged compounds. Particles in the absence of DNA (binary system) and in the presence of DNA (ternary system) have been prepared. The physicochemical characterization (particle size, polydispersity index and degree of DNA entrapment) have been evaluated. Cytotoxicity experiments have shown that the isolated systems and the resulting gelatin-based nanoparticles are essentially non-toxic. The pH-dependent hemolysis assay and the response of the nanoparticles co-incubated in buffers at defined pHs that mimic extracellular, early endosomal and late endo-lysosomal environments demonstrated that the nanoparticles tend to destabilize and DNA can be successfully released. It was found that, in addition to the imposed compositions, the gel strength of gelatin is a controlling parameter of the final properties of these nanoparticles. The results indicate that these gelatin-based nanoparticles have excellent properties as highly potent and non-toxic intracellular delivery systems, rendering them promising DNA vehicles to be used as non-viral gene delivery systems.
In this work we present a complete characterization and magnetic study of vanadium
S=1) decrease notably the amount of V 4+ ions in the system, from 14-16% (non-doped case) to 2-4%, with respect to the total vanadium atoms into the tubular nanostructure, improving considerably their potential technological applications as Li-ion batteries cathodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.