Caenorhabditis elegans muscle contains seven different nicotinic receptor (AChR) subunits, five of which have been shown to be components of adult levamisole-sensitive AChRs (LAChRs). To elucidate the reason for such subunit diversity, we explore their functional roles in larva 1 (L1) muscle cells. Singlechannel and macroscopic current recordings reveal that the ␣-type LEV-8 subunit is a component of native L1 L-AChRs but behaves as a nonessential subunit. It plays a key role in maintaining a low rate and extent of desensitization of L-AChRs. In the absence of the ␣-type ACR-8 subunit, L-AChR channel properties are not modified, thus indicating that ACR-8 is not a component of L1 L-AChRs. Together with our previous findings, this study reveals that L1 muscle cells express a main L-AChR type composed of five different subunits: UNC-38, UNC-63, UNC-29, LEV-1, and LEV-8. Analysis of a double lev-8; acr-8-null mutant, which shows an uncoordinated and levamisole-resistant phenotype, reveals that ACR-8 can replace LEV-8 in its absence, thus attributing a functional role to this subunit. Docking into homology modeled L-AChRs proposes that ACh forms the typical cation-interaction, suggests why levamisole is less efficacious than ACh, and shows that ACR-8 can form activatable binding-sites, thus opening doors for elucidating subunit arrangement and anthelmintic selectivity.
Nicotinic acetylcholine receptors (nAChRs) are homo-or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in singlechannel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the 'levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER.
Nicotinic acetylcholine receptors (nAChRs) are pentameric neurotransmitter-gated ion channels that mediate synaptic transmission throughout the nervous system in vertebrates and invertebrates. Caenorhabditis elegans is a nonmammalian model for the study of the nervous system and a model of parasitic nematodes. Nematode muscle nAChRs are of considerable interest because they are targets for anthelmintic drugs. We show single-channel activity of C. elegans muscle nAChRs for the first time. Our results reveal that in the L1 larval stage acetylcholine (ACh) activates mainly a levamisole-sensitive nAChR (L-AChR). A single population of 39 pS channels, which are 5-fold more sensitive to levamisole than ACh, is detected. In contrast to mammalian nAChRs, open durations are longer for levamisole than for ACh. Studies in mutant strains reveal that UNC-38, UNC-63, and UNC-29 subunits are assembled into a single L-AChR in the L1 stage and that these subunits are irreplaceable, suggesting that they are vital for receptor function throughout development. Recordings from a strain mutated in the LEV-1 subunit show a main population of channels with lower conductance (26 pS), prolonged open durations, and reduced sensitivity to levamisole. Thus, although LEV-1 is preferentially incorporated into native L-AChRs, receptors lacking this subunit can still function. No single-channel activity from levamisole-insensitive nAChRs is detected. Thus, during neuromuscular transmission in C. elegans, the majority of AChactivated current flows through L-AChRs. This study contributes to the understanding of the molecular mechanisms underlying functional diversity of the nAChR family and offers an excellent strategy to test novel antiparasitic drugs.
The prevalence of human and animal helminth infections remains staggeringly high, thus urging the need for concerted efforts towards this area of research. GABA receptors, encoded by the unc-49 gene, mediate body muscle inhibition in Caenorhabditis elegans and parasitic nematodes and are targets of anthelmintic drugs. Thus, the characterization of nematode GABA receptors provides a foundation for rational anti-parasitic drug design. We therefore explored UNC-49 channels from C. elegans muscle cultured cells of the first larval stage at the electrophysiological and behavioral levels. Whole-cell recordings reveal that GABA, muscimol and the anthelmintic piperazine elicit macroscopic currents from UNC-49 receptors that decay in their sustained presence, indicating full desensitization. Single-channel recordings show that all drugs elicit openings of ∼2.5 pA (+100 mV), which appear either as brief isolated events or in short bursts. The comparison of the lowest concentration required for detectable channel opening, the frequency of openings and the amplitude of macroscopic currents suggest that piperazine is the least efficacious of the three drugs. Macroscopic and single-channel GABA-activated currents are profoundly and apparently irreversibly inhibited by ivermectin. To gain further insight into ivermectin action at C. elegans muscle, we analyzed its effect on single-channel activity of the levamisol-sensitive nicotinic receptor (L-AChR), the excitatory receptor involved in neuromuscular transmission. Ivermectin produces a profound inhibition of the frequency of channel opening without significant changes in channel properties. By revealing that ivermectin inhibits C. elegans muscle GABA and L-AChR receptors, our study adds two receptors to the already known ivermectin targets, thus contributing to the elucidation of its pleiotropic effects. Behavioral assays in worms show that ivermectin potentiates piperazine-induced paralysis, thus suggesting that their combination is a good strategy to overcome the increasing resistance of parasites, an issue of global concern for human and animal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.