A protease from the pulp of Cucurbitaficifolia was purified. Its molecular mass was estimated to be about 60 kDa. Its maximum activity is in the alkaline region against azocollagen as substrate. The enzyme is inhibited by phenylmethylsulphonyl fluoride but not by EDTA and iodoacetic acid.
The photobinding between riboflavin and the Trp residues from human and bovine serum albumins at two pH-dependent protein conformations was studied. At pH 7.0 both proteins showed photo-adduct formation with hyperbolic kinetics. In the bovine serum albumin this is attributed to the different locations of the two Trp residues. In the case of the human serum albumin, which has only one Trp residue, this behaviour may be related to different molecular conformations of the protein, as is also manifest in the iodide quenching experiments. At pH 3.5, the kinetics of the photo-adduct formation were found to be slower and showed a monophasic behaviour. These results are due to the conformational change of these proteins at acidic pH; the Trp residues of both proteins being now located in a more hydrophobic environment. When bovine serum albumin was anaerobically irradiated at pH 7.0 in the presence of 14C-riboflavin and then cleaved by CNBr, two peptides were obtained, containing the Trp-134 and Trp-212 residues, respectively. The incorporation of 14C-riboflavin in these samples was significantly higher at the level of the peptide containing the Trp-134 residue. Furthermore, it was demonstrated, that the energy transfer from enzymatically generated triplet acetone to riboflavin can also promote the binding of this vitamin to the Trp residues of human and bovine serum albumins.
Proteins bearing colored prosthetic groups, such as the heme group in hemoglobin or the bilin group in c-phycocyanin, quench singlet oxygen by interactions at the apoprotein and the prosthetic group levels. In both proteins, chemical modification of the chromophore constitutes only a minor reaction pathway. While total deactivation of singlet oxygen takes place with rate constants of 4.0 x 10(9) and 4.2 x 10(8) M-1 s-1 for hemoglobin and phycocyanin, respectively, the bleaching of the chromophore takes place with rate constants of 3.2 x 10(6) and approximately 1 x 10(7) M-1 s-1. Irradiation of phycocyanin with red light bleaches the chromophore with low yields (approximately 0.8 x 10(-4)). Part of this bleaching is mediated by singlet oxygen produced by the irradiation of the bilin group. The low relevance of the singlet oxygen pathway is compatible with a low quantum yield (approximately 10(-3)) of free singlet oxygen production after irradiation of the protein.
Proteins bearing colored prosthetic groups, such as the heme group in hemoglobin or the bilin group in c-phycocyanin, quench singlet oxygen by interactions at the apoprotein and the prosthetic group levels. In both proteins, chemical modification of the chromophore constitutes only a minor reaction pathway. While total deactivation of singlet oxygen takes place with rate constants of 4.0 x 10(9) and 4.2 x 10(8) M-1 s-1 for hemoglobin and phycocyanin, respectively, the bleaching of the chromophore takes place with rate constants of 3.2 x 10(6) and approximately 1 x 10(7) M-1 s-1. Irradiation of phycocyanin with red light bleaches the chromophore with low yields (approximately 0.8 x 10(-4)). Part of this bleaching is mediated by singlet oxygen produced by the irradiation of the bilin group. The low relevance of the singlet oxygen pathway is compatible with a low quantum yield (approximately 10(-3)) of free singlet oxygen production after irradiation of the protein.
Polymorphisms in the CAMP gene (cathelicidin) have not been tested in tuberculosis susceptibility. We tested polymorphisms rs9844812 (HIF-1α::ARNT binding site) and rs56122065 (CAMP) plus rs1800972 (DEFB1). SNP rs1800972 was associated with extrapulmonary tuberculosis (EPTB) in a codominant model (genotype CG, P = 0.037, OR 4.82; 95% CI: 0.92-47.42; statistical power, 82%), but not PTB (P = 0.101) in a Mexican population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.