These studies indicate that nitrate is a reliable measure of NO metabolism in vivo but that because of the long half-life, nitrate will accumulate in plasma once it is produced. Because of the large volume of distribution (21% of body weight versus the 4% of body weight usually attributed to plasma volume, the compartment in which nitrate is measured), simple measures of plasma nitrate underestimate by a factor of 4 to 6 the actual production of nitrate or NO by the body. In disease states, such as heart failure, in which renal function and extracellular volume are altered, caution should be exercised when increases in nitrate in plasma as an index of NO formation are evaluated.
A specific decrease in synthetic activity of the L-arginine-NO metabolic pathway contributes to decreased endothelium-dependent vasodilation in patients with congestive heart failure.
Macrophage dysfunction is considered an important contributory factor for increased propensity of infections in uremia. Because nitric oxide (NO) is believed to be an effector molecule of macrophage cytotoxicity, we propose that the dysfunction may be related to impaired NO synthesis. To verify this hypothesis, we evaluated macrophage NO synthesis in the presence of urea, a compound that accumulates in renal failure and is believed by some to be a uremic toxin. Macrophages (RAW 264.7 cells) were incubated with bacterial lipopolysaccharide to induce NO synthesis, whereas the test groups had various concentrations of urea in addition. NO synthesis was measured by assaying the supernatant for nitrites and nitrates by chemiluminescence. We observed that urea consistently produced a dose-dependent reversible inhibition of inducible NO production in macrophages, whereas parathormone, another toxin retained in uremia, had no such inhibitory effects. Further studies revealed that mRNA for inducible NO synthase was not inhibited by urea. We thus conclude that urea inhibits inducible NO synthesis in macrophages by a posttranscriptional mechanism and that this may be important in macrophage dysfunction of uremia.
Chronic, but not acute, ethanol administration increases peroxynitrite hepatotoxicity by enhancing concomitant production of nitric oxide and superoxide, both of which are prevented by polyenylphosphatidylcholine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.