Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (∼42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (∼5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable.
Floods are one of the natural hazards that could be most affected by climate change, causing great economic damage and casualties in the world. On December 2019 in Reinosa (Cantabria, Spain), took place one of the worst floods in memory. Implementation of DIRECTIVE 2007/60/EC for the assessment and management of flood risks in Spain enabled the detection of this river basin with a potential significant flood risk via a preliminary flood risk assessment, and flood hazard and flood risk maps were developed. The main objective of this paper is to present a methodology to estimate climate change’s effects on flood hazard and flood risk, with Reinosa as the case study. This river basin is affected by the snow phenomenon, even more sensitive to climate change. Using different climate models, regarding a scenario of comparatively high greenhouse gas emissions (RCP8.5), with daily temperature and precipitation data from years 2007–2070, and comparing results in relative terms, flow rate and flood risk variation due to climate change are estimated. In the specific case of Reinosa, the MRI-CGCM3 model shows that climate change will cause a significant increase of potential affected inhabitants and economic damage due to flood risk. This evaluation enables us to define mitigation actions in terms of cost–benefit analysis and prioritize the ones that should be included in flood risk management plans.
Flysch materials are one of the most challenging geological materials and often give rise to slope 15 instability problems. Due to its natural heterogeneity, geomechanical characterization of Flysch 16 materials is somewhat difficult. The Spanish Basque Arc Alpine region is a very well-known 17 location for flysch materials. In this paper, an area of approximately 100 km 2 in the region is 18 intensively studied and their flysch materials geomechanically characterized. A total of 33 locations 19 are investigated by a broad geological-geotechnical investigation, involving petrographic analyses, 20 geomechanical stations, boreholes and mechanical laboratory tests. In addition, a slope inventory 21 was carried out to assess the situation in the existing slopes in the area. Characterization of 22 materials is carried out in terms of RQD, RMR and GSI as well as using the Hoek-Brown failure 23 criterion. Different correlations are assessed, establishing their appropriateness for estimating the 24 mechanical parameters of a flysch material rock mass.
Climate change undoubtedly will affect snow events as temperature and precipitation are expected to change in the future. Spanish mountains are especially affected by that situation, since snow storage is there focussed on very specific periods of the hydrological year and plays a very important role in the management of water resources. In this study, an analysis of the behaviour of the complex snow-related phenomena in the four main mountain regions of Spain in the next 50 years is conducted. The ASTER hydrological model is applied using temperature and precipitation data as basic input, estimated under a climate change scenario. Results show different changes in the maximum and average expected flows, depending on the very different magnitude and sign of changes in precipitation. An increase of flooding episodes may occur as a result of a complex relation between changes in precipitation and an increase in maximum snowmelt intensities that range from 2.1% in the Pyrenees to 7.4% in the Cantabrian Mountains. However, common patterns are shown in a shorter duration of the snow bulk reserves, expected to occur 45 days earlier for the Cantabrian Mountains, and about 30 days for the rest of the studied mountain regions. Changes observed also lead to a concerning decrease in the regulatory effect of the snow-related phenomena in the Spanish rivers, with a decrease in the average snow accumulation that ranges from about 28% for the Pyrenees and Sierra Nevada to 42% for the Central System and the Cantabrian Mountains. A decrease in average flow is expected, fluctuating from 2.4% in the Pyrenees to 7.3% in Cantabrian Mountains, only increasing in the Central System by 4.0%, making all necessary to develop new adaptation measures to climate change.
This paper presents the implementation of a learning methodology following a student-centred approach. The methodology is based on the use of project based and cooperative learning and mainly consists of commissioning students to prepare a presentation on a topic of their subject. Students work in groups, and later must deliver a real lecture to their colleagues. The proposed methodology was applied across 7 years and its implementation was monitored via day-to-day observations, annual surveys, the gathering of direct feedback as well as by analysing the students’ academic performance. Results show the ability of the proposed learning methodology to enhance motivation and engagement of students, facilitate the improvement of four soft skills (team-working, practical thinking, effective communication and critical thinking), eliminate absenteeism and facilitate long-term retention of the knowledge and skills acquired in a subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.