Gluten-free (GF) biscuits were prepared by replacing part of a GF flour mix (GFM) with 0, 15, 30 and 45 g/100 g (total flour) with a novel resistant starch-rich ingredient obtained from annealed white sorghum starch (RSWS). The chemical composition, physical characteristics, in vitro starch digestion and sensory evaluation of biscuits were considered. The chemical composition of samples was influenced by the addition of the RSWS. The highest total dietary fibre and RS contents (p < 0.05) were measured in 45-RSWS biscuits. The starch hydrolysis index values decreased when the level of RSWS increased in the composite. With regard to quality parameters, the use of RSWS influenced the hardness of the biscuits, and the highest value obtained for 45-RSWS. Some of the selected sensory attributes, along with the overall acceptability score, were negatively influenced by the RSWS addition, even if all remained above the limit of acceptability. The use of RSWS in GF biscuit formulation can contribute towards the creation of food products likely having slowly digestible starch properties, and this can be achieved without drastically compromising on the quality and sensory attributes.
Sourdough fermentation of bakery products is a well-established and widespread technique to confer an added value to the resulting food. In recent decades, gluten-free raw materials have gained more attention due to the diffusion of food disorders such as coeliac disease, but, at the same time, they present difficult manipulation and scarce technological properties because of the absence of gluten. For this reason, the present work was aimed at selecting starter cultures for sourdough application that are isolated from fermentation of sorghum flour. Three isolates of Lactobacillus fermentum, Weissella cibaria, and Weissella confusa were selected for the following properties: exopolysaccharide synthesis, acidification, CO2 production, and amylase activity. The investigated phenotypic characteristics were confirmed by genomic analyses, which also highlighted other potentially beneficial features for use in bakery products employment. These strains, together with bakery yeast, were used for bread preparation using sorghum and wheat flour and after 24 h of fermentation the resulting dough was analyzed to assess the improvement of its characteristics. The presence of lactic acid bacteria (LAB) had a great impact on the final dough, and the best preparation, from a rheological point of view, resulted in one made of sorghum and wheat flour with added LAB and bakery yeast, whose resulting characteristics were similar to all wheat flour doughs. The results of this study suggest a potential application of the selected starters in sorghum composite bread and should be validated with data from large-scale pilot tests conducted in industrial bakeries.
Skin powders and aqueous alcohol extracts were obtained from waste marcs from different grape varieties (Barbera, Nebbiolo, Pinot Noir, Chardonnay, Moscato and Müller-Thurgau). Both skins and extracts were analysed for the content of chemical contaminants: ochratoxin A (OTA), biogenic amines (BIAs), pesticides and metals. OTA was detected in low concentrations in Barbera, Moscato and Nebbiolo skins, but only in Barbera and Moscato extracts. Cadaverine, putrescine, ethanolamine and ethylamine were found in extracts at very low levels, while potential allergenic amines, tyramine and histamine, were never detected. Different pesticides were present in both skins and extracts. Pb and Cd were found in trace only in the powders, and K, Ca and Mg were the most abundant elements in both skin powders and extracts. Concentrations of the different contaminants were related to fibre content or total phenolics content of powders and extracts, respectively, in order to evaluate their use in the food sector.
Five commercial hazelnut/cocoa spreads with different compositions were tested by rheology/tribology. The impact of each formulation on the structural/lubricant performances was investigated. Rotational/oscillatory rheology was chosen to assess material behavior during flow. Viscosity variation as a function of temperature and chamber geometry was evaluated. Oscillatory mode tests were carried out to obtain information on product viscoelasticity. Tribological analysis was performed at different temperatures aiming at simulating the chewing/swallowing process. All samples were categorized as pseudo-plastic and viscoelastic materials, with the elastic component prevailing over the viscous one. Major differences were detected in terms of consistency index, depending on the total lipid content. Temperature increase enhanced spread fluidity with a decreasing viscosity according to the Arrhenius model (R 2 > 0.942) and greater values of activation energy reflecting higher sensitivity to microstructural changes. An inverse relationship between Casson viscosity η c ð Þand sugar/fat ratio highlighted additional correlations between structural parameters and spread formulation. Tribological measurements at 25 C highlighted that, at the initial eating stage, the friction factor (0.112-0.262 at sliding velocity of 8 Â 10 À6 m/s) was strongly affected by either the amounts of solid fat or hazelnut percentage. Tribological data corroborated the theory for which tribology and rheology cover different domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.