Here we describe a 2-step temporal phase unwrapping formula that uses 2-sensitivity demodulated phases for measuring static surfaces. The first phase demodulation has at most 1-wavelength sensitivity and the second one is G-times (G>>1.0) more sensitive. Measuring static surfaces with 2-sensitivity fringe patterns is well known and recent published methods combine 2-sensitivities measurements mostly by triangulation. Two important applications for our 2-step unwrapping algorithm is profilometry and synthetic aperture radar (SAR) interferometry. In these two applications the object or surface being analyzed is static and highly discontinuous; so temporal unwrapping is the best strategy to follow. Phase-demodulation in profilometry and SAR interferometry is very similar because both share similar mathematical models.
Fringe projection profilometry is a well-known technique to digitize 3-dimensional (3D) objects and it is widely used in robotic vision and industrial inspection. Probably the single most important problem in single-camera, single-projection profilometry are the shadows and specular reflections generated by the 3D object under analysis. Here a single-camera along with N-fringe-projections is (digital) coherent demodulated in a single-step, solving the shadows and specular reflections problem. Co-phased profilometry coherently phase-demodulates a whole set of N-fringe-pattern perspectives in a single demodulation and unwrapping process. The mathematical theory behind digital co-phasing N-fringe-patterns is mathematically similar to co-phasing a segmented N-mirror telescope.
Abstract:In this paper we apply the frequency transfer function (FTF) formalism to analyze the red, green and blue (RGB) phase-shifting fringeprojection profilometry technique. The phase-shifted fringe patterns in RGB fringe projection are typically corrupted by crosstalk because the sensitivity curves of most projection-recording systems overlap. Crosstalk distortion needs to be compensated in order to obtain high quality measurements. We study phase-demodulation methods for null/mild, moderate, and severe levels of RGB crosstalk. For null/mild crosstalk, we can estimate the searched phase-map using Bruning's 3-step phase-shifting algorithm (PSA). For moderate crosstalk, the RGB recorded data is usually preprocessed before feeding it into Bruning's PSA; alternatively, in this paper we propose a computationally more efficient approach, which combines crosstalk compensation and phase-demodulation into a single process. For severe RGB crosstalk, we expect non-sinusoidal fringes' profiles (distorting harmonics) and significant uncertainties on the crosstalk calibration (which produces pseudo-detuning error). Analyzing these distorting phenomena, we conclude that squeezing interferometry is the most robust demodulation method for RGB fringe-projection techniques. We support our conclusions with numerical simulations and experimental results.Centro de Investigaciones en Optica, 2016-05-13.
In this paper we describe a high-resolution, low-noise phase-shifting algorithm applied to 360 degree digitizing of solids with diffuse light scattering surface. A 360 degree profilometer needs to rotate the object a full revolution to digitize a three-dimensional (3D) solid. Although 360 degree profilometry is not new, we are proposing however a new experimental set-up which permits full phase-bandwidth phase-measuring algorithms. The first advantage of our solid profilometer is: it uses base-band, phase-stepping algorithms providing full data phase-bandwidth. This contrasts with band-pass, spatial-carrier Fourier profilometry which typically uses 1/3 of the fringe data-bandwidth. In addition phase-measuring is generally more accurate than single line-projection, non-coherent, intensity-based line detection algorithms. Second advantage: new fringe-projection set-up which avoids self-occluding fringe-shadows for convex solids. Previous 360 degree fringe-projection profilometers generate self-occluding shadows because of the elevation illumination angles. Third advantage: trivial line-by-line fringe-data assembling based on a single cylindrical coordinate system shared by all 360-degree perspectives. This contrasts with multi-view overlapping fringe-projection systems which use iterative closest point (ICP) algorithms to fusion the 3D-data cloud within a single coordinate system (e.g. Geomagic). Finally we used a 400 steps/rotation turntable, and a 640x480 pixels CCD camera. Higher 3D digitized surface resolutions and less-noisy phase measurements are trivial by increasing the angular-spatial resolution and phase-steps number without any substantial change on our 360 degree profilometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.