fellettiD fF nd qri de venizD gF nd tonesD tF nd fizziD F nd f¤ orgerD vF nd egurD qF nd gstellettiD eF nd n de fundD F nd erestrupD uF nd frryD tF nd felkD uF nd ferkhuysenD eF nd firnieEquvinD uF nd fussettiniD wF nd grolliD wF nd gonsuegrD F nd hopioD iF nd peierfeilD F nd pern¡ ndezD F nd pernndez qrridoD F nd qriEzquezD iF nd qrridoD F nd qinnioD qF nd qoughD F nd tepsenD xF nd tonesD FiF nd uempD F nd uerrD tF nd uingD tF nd Lpi¡ nskD wF nd v¡ zroD qF nd vusD wFgF nd wrelloD vF nd wrtinD F nd wqinnityD F nd y9rnleyD tF nd ylivo del emoD F nd rsiewizD F nd inonD qF nd odriguezD gF nd oyteD tF nd hneiderD gFF nd ummersD tFF nd llesiD F nd owlesD eFF nd erspoorD iF nd nningenD rF nd ntzenD uFwF nd ildmnD vF nd lewskiD wF @PHPHA 9wore thn one million rriers frgment iurope9s riversF9D xtureFD SVV F ppF RQTERRIF Further information on publisher's website: httpsXGGdoiForgGIHFIHQVGsRISVTEHPHEQHHSEP Publisher's copyright statement:Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Implicit in the question, “How should I prioritize restoration actions?” is often the unstated question, “What should I restore?” Distinguishing between these questions helps clarify the restoration planning process, which has four distinct steps: (1) identify the restoration goal, (2) select a project prioritization approach that is consistent with the goal, (3) use watershed assessments to identify restoration actions, and (4) prioritize the list of actions. A well‐crafted restoration goal identifies the biological objective of restoration, addresses underlying causes of habitat change, and recognizes that social, economic, and land use objectives may constrain restoration options. Once restoration goals are identified, one of six general approaches can be selected for prioritizing restoration actions: project type, refugia, decision support systems, single‐species analysis, multispecies analysis, and cost effectiveness. Prioritizing by project type, refugia, or a decision support system requires the least quantitative information, and each approach is relatively easy to use. Single‐species, multispecies, and cost effectiveness approaches require more information and effort but often most directly address legal requirements. Watershed assessments provide most of the information used to identify and prioritize actions and should be explicitly and carefully designed to support the goals and prioritization scheme. Watershed assessments identify causes of habitat degradation, habitat losses with the greatest effect on biota and ecosystems, and local land and water uses that may limit restoration opportunities. Results of assessments are translated into suites of restoration options, and analysis of land use and economic constraints helps to evaluate the feasibility of various options. Finally, actions are prioritized based on assessment results and the selected prioritization scheme. In general, we recommend the use of simple decision support systems for cases in which watershed assessments provide incomplete information; the cost effectiveness approach is recommended for cases in which watershed assessments identify (1) restoration actions needed to restore riverine habitats, (2) biological benefits associated with each action, and (3) costs of restoration actions.
In British Columbia, side-channels have been built to compensate for lost salmonid habitat. Most are structurally simple with little in-stream wood; however, they support high densities of juvenile coho salmon. We longitudinally divided in halves the top 100 m of two dead-end artificial side-channels, one side-channel with low winter water temperatures (surface-fed) and one with relatively higher water temperatures (groundwater-fed), closed the downstream end of each side-channel with two-way traps, and treated only one half of each channel with bundles of wood. Trapped fish were marked daily and coho salmon movement, growth and smolt output were monitored for two years. Wood addition increased juvenile coho winter carrying capacity and spring smolt output only in the 'colder' surface-fed side-channel. In contrast, in the groundwater-fed side-channel, with relatively higher water temperatures, the wood treatment slightly reduced the channel's carrying capacity and the spring output of coho salmon smolts.
Degraded floodplains and valley floors are restored with the goal of enhancing habitat for native fish and aquatic-riparian biota and the protection or improvement of water quality. Recent years have seen a shift toward “process-based restoration” that is intended to reestablish compromised ecogeomorphic processes resulting from site- or watershed-scale degradation. One form of process-based restoration has developed in the Pacific Northwest, United States, that is intended to reconnect rivers to their floodplains by slowing down flows of sediment, water, and nutrients to encourage lateral and vertical connectivity at base flows, facilitating development of dynamic, self-forming, and self-sustaining river-wetland corridors. Synergies between applied practices and the theoretical work of Cluer and Thorne in 2014 have led this form of restoration to be referred to regionally as restoration to a Stage 0 condition. This approach to rehabilitation is valley scale, rendering traditional monitoring strategies that target single-thread channels inadequate to capture pre- and post-project site conditions, thus motivating the development of novel monitoring approaches. We present a specific definition of this new type of rehabilitation that was developed in collaborative workshops with practitioners of the approach. Further, we present an initial synthesis of results from monitoring activities that provide a foundation for understanding the effects of this approach of river rehabilitation on substrate composition, depth to groundwater, water temperature, macroinvertebrate richness and abundance, secondary macroinvertebrate production, vegetation conditions, wood loading and configuration, water inundation, flow velocity, modeled juvenile salmonid habitat, and aquatic biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.