It has always been a topic of great interest in air transport management to be able to estimate controller workload. So far, research has not had the opportunity to make use of real data on the controller’s actions. We have enough data to be able to use machine learning methods. The aim of this work is to predict the controller’s actions to know his workload. Several machine learning models were tested to try different combinations of features and the selected algorithms and two models were finally chosen. The predictions provided by the models are good enough to be used when a first approximation of the workload in a sector is to be obtained. Finally, explainability techniques were employed to discover the patterns found by the AI in the machine learning models. Thanks to these techniques, we can build a profile of the critical flights that increase the workload the most.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.