In this paper, we analyze the performance issues involved in the generation of automated traffic reports for large IT infrastructures. Such reports allow the IT manager to proactively detect possible abnormal situations and roll out the corresponding corrective actions. With the ever-increasing bandwidth of current networks, the design of automated traffic report generation systems is very challenging. In a first step, the huge volumes of collected traffic are transformed into enriched flow records obtained from diverse collectors and dissectors. Then, such flow records, along with time series obtained from the raw traffic, are further processed to produce a usable report. As will be shown, the data volume in flow records turns out to be very large as well and requires careful selection of the key performance indicators (KPIs) to be included in the report. In this regard, we discuss the use of high-level languages versus low-level approaches, in terms of speed and versatility. Furthermore, our design approach is targeted for rapid development in commodity hardware, which is essential to cost-effectively tackle demanding traffic analysis scenarios. Actually, the paper shows feasibility of delivering a large number of KPIs, as will be detailed later, for several TBytes of traffic per day using a commodity hardware architecture and high-level languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.