Defect-free graphene is impermeable to gases and liquids [1][2][3][4] but highly permeable to thermal protons [5][6][7][8] . Atomic-scale defects such as vacancies, grain boundaries and Stone-Wales defects are predicted [9][10][11] to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes ~1,000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of 8-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to the 6-atom rings of graphene and a relatively low barrier of ~0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.Despite being a one-atom-thick material, no more than a few gas atoms per hour can permeate through micrometer-sized defect-free graphene membranes, as proven experimentally 3 . Even the smallest ions are blocked by the crystal 4 . These phenomena arise because the dense electron clouds of graphene's crystal lattice impose energy barriers of several eV to incoming molecular and ionic species [9][10][11] , which forbids their permeation under ambient conditions. In contrast, it has been shown experimentally that protons, nuclei of hydrogen atoms, can transport through defect-free graphene relatively easily, overcoming an energy barrier of only ≲1 eV (refs 3-6 ). In this context, theory predicts
Crack propagation in graphene is essential to understand mechanical failure in 2D materials. We report a systematic study of crack propagation in graphene as a function of defect content. Nanoindentations and subsequent images of graphene membranes with controlled induced defects show that while tears in pristine graphene span microns length, crack propagation is strongly reduced in the presence of defects. Accordingly, graphene oxide exhibits minor crack propagation. Our work suggests controlled defect creation as an approach to avoid catastrophic failure in graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.