BackgroundHuman mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodulatory activities making them an attractive tool for cellular therapy. In the last few years it has been shown that the beneficial effects of hMSC may be due to paracrine effects and, at least in part, mediated by extracellular vesicles (EV). EV have emerged as important mediators of cell-to-cell communication. Flow cytometry (FCM) is a routine technology used in most clinical laboratories and could be used as a methodology for hMSC-EV characterization. Although several reports have characterized EV by FCM, a specific panel and protocol for hMSC-derived EV is lacking. The main objective of our study was the characterization of hMSC-EV using a standard flow cytometer.MethodsHuman MSC from bone marrow of healthy donors, mesenchymal cell lines (HS-5 and hTERT) and a leukemic cell line (K562 cells) were used to obtain EV for FCM characterization. EV released from the different cell lines were isolated by ultracentrifugation and were characterized, using a multi-parametric analysis, in a conventional flow cytometer. EV characterization by transmission electron microscopy (TEM), western blot (WB) and Nano-particle tracking analysis (NTA) was also performed.ResultsEV membranes are constituted by the combination of specific cell surface molecules depending on their cell of origin, together with specific proteins like tetraspanins (e.g. CD63). We have characterized by FCM the EV released from BM-hMSC, that were defined as particles less than 0.9 μm, positive for the hMSC markers (CD90, CD44 and CD73) and negative for CD34 and CD45 (hematopoietic markers). In addition, hMSC-derived EV were also positive for CD63 and CD81, the two characteristic markers of EV. To validate our characterization strategy, EV from mesenchymal cell lines (hTERT/HS-5) were also studied, using the leukemia cell line (K562) as a negative control. EV released from mesenchymal cell lines displayed the same immunophenotypic profile as the EV from primary BM-hMSC, while the EV derived from K562 cells did not show hMSC markers. We further validated the panel using EV from hMSC transduced with GFP.Finally, EV derived from the different sources (hMSC, hTERT/HS-5 and K562) were also characterized by WB, TEM and NTA, demonstrating the expression by WB of the exosomal markers CD63 and CD81, as well as CD73 in those from MSC origin. EV morphology and size/concentration was confirmed by TEM and NTA, respectively.ConclusionWe described a strategy that allows the identification and characterization by flow cytometry of hMSC-derived EV that can be routinely used in most laboratories with a standard flow cytometry facility.Electronic supplementary materialThe online version of this article (doi:10.1186/s12964-015-0124-8) contains supplementary material, which is available to authorized users.
Transient reactive oxygen species (ROS) production is currently proving to be an important mechanism in the regulation of intracellular signalling, but reports showing the involvement of ROS in important biological processes, such as cell differentiation, are scarce. In this study, we show for the first time that ROS production is required for megakaryocytic differentiation in K562 and HEL cell lines and also in human CD34 þ cells. ROS production is transiently activated during megakaryocytic differentiation, and such production is abolished by the addition of different antioxidants (such as N-acetyl cysteine, trolox, quercetin) or the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenylene iodonium. The inhibition of ROS formation hinders differentiation. RNA interference experiments have shown that a p22 phoxdependent NADPH oxidase activity is responsible for ROS production. In addition, the activation of ERK, AKT and JAK2 is required for differentiation, but the activation of phosphatidylinositol 3-kinase and c-Jun N-terminal kinase seems to be less important. When ROS production is prevented, the activation of these signalling pathways is partly inhibited. Taken together, these results show that NADPH oxidase ROS production is essential for complete activation of the main signalling pathways involved in megakaryocytopoiesis to occur. We suggest that this might also be important for in vivo megakaryocytopoiesis.
PTPN13 is a high-molecular weight intracellular phosphatase with several isoforms that exhibits a highly modular structure. Although in recent years different roles have been described for PTPN13, we are still far from understanding its function in cell biology. Here we show that PTPN13 expression is activated during megakaryocytic differentiation at the protein and mRNA level. Our results show that the upregulation of PTPN13 inhibits megakaryocytic differentiation, while PTPN13 silencing triggers differentiation. The ability of PTPN13 to alter megakaryocytic differentiation can be explained by its capacity to regulate ERK and STAT signalling. Interestingly, the silencing of β-catenin produced the same effect as PTPN13 downregulation. We demonstrate that both proteins coimmunoprecipitate and colocalise. Moreover, we provide evidence showing that PTPN13 can regulate β-catenin phosphorylation, stability and transcriptional activity. Therefore, the ability of PTPN13 to control megakaryocytic differentiation must be intimately linked to the regulation of β-catenin function. Moreover, our results show for the first time that PTPN13 is stabilised upon Wnt signalling, which makes PTPN13 an important player in canonical Wnt signalling. Our results show that PTPN13 behaves as an important regulator of megakaryocytic differentiation in cell lines and also in murine haematopoietic progenitors. This importance can be explained by the ability of PTPN13 to regulate cellular signalling, and especially through the regulation of β-catenin stability and function. Our results hold true for different megakaryocytic cell lines and also for haematopoietic progenitors, suggesting that these two proteins may play a relevant role during in vivo megakaryopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.