OBJECTIVE Recent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called "asleep" DBS, and historical cohorts undergoing "awake" DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution. METHODS PD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson's Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson's Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events. RESULTS Six-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively). CONCLUSIONS In PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.
O ver the past 30 years, deep brain stimulation (DBS) has evolved into a mainstream therapy for patients with Parkinson's disease (PD) that is supported by Level 1 evidence. 5,6,25,31,32 The clinical efficacy of DBS depends on appropriate lead placement within the targeted structure. 3,7,20,22 obJective Recent studies show that deep brain stimulation can be performed safely and accurately without microelectrode recording or test stimulation but with the patient under general anesthesia. The procedure couples techniques for direct anatomical targeting on MRI with intraoperative imaging to verify stereotactic accuracy. However, few authors have examined the clinical outcomes of Parkinson's disease (PD) patients after this procedure. The purpose of this study was to evaluate PD outcomes following "asleep" deep brain stimulation in the globus pallidus internus (GPi). methods The authors prospectively examined all consecutive patients with advanced PD who underwent bilateral GPi electrode placement while under general anesthesia. Intraoperative CT was used to assess lead placement accuracy. The primary outcome measure was the change in the off-medication Unified Parkinson's Disease Rating Scale motor score 6 months after surgery. Secondary outcomes included effects on the 39-Item Parkinson's Disease Questionnaire (PDQ-39) scores, on-medication motor scores, and levodopa equivalent daily dose. Lead locations, active contact sites, stimulation parameters, and adverse events were documented. results Thirty-five patients (24 males, 11 females) had a mean age of 61 years at lead implantation. The mean radial error off plan was 0.8 mm. Mean coordinates for the active contact were 21.4 mm lateral, 4.7 mm anterior, and 0.4 mm superior to the midcommissural point. The mean off-medication motor score improved from 48.4 at baseline to 28.9 (40.3% improvement) at 6 months (p < 0.001). The PDQ-39 scores improved (50.3 vs 42.0; p = 0.03), and the levodopa equivalent daily dose was reduced (1207 vs 1035 mg; p = 0.004). There were no significant adverse events. coNclusioNs Globus pallidus internus leads placed with the patient under general anesthesia by using direct anatomical targeting resulted in significantly improved outcomes as measured by the improvement in the off-medication motor score at 6 months after surgery.Clinical trial registration no.: NCT01997398 (clinicaltrials.gov)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.