OBJECTIVE Recent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called "asleep" DBS, and historical cohorts undergoing "awake" DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution. METHODS PD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson's Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson's Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events. RESULTS Six-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively). CONCLUSIONS In PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.
OBJECTIVE As the number of deep brain stimulation (DBS) procedures performed under general anesthesia ("asleep" DBS) increases, it is more important to assess the rates of adverse events, inpatient lengths of stay (LOS), and 30-day readmission rates in patients undergoing these procedures compared with those in patients undergoing traditional "awake" DBS without general anesthesia. METHODS All patients in an institutional database who had undergone awake or asleep DBS procedures performed by a single surgeon between August 2011 and August 2014 were reviewed. Adverse events, inpatient LOS, and 30-day readmissions were analyzed. RESULTS A total of 490 electrodes were placed in 284 patients, of whom 126 (44.4%) underwent awake surgery and 158 (55.6%) underwent asleep surgery. The most frequent overall complication for the cohort was postoperative mental status change (13 patients [4.6%]), followed by hemorrhage (4 patients [1.4%]), seizure (4 patients [1.4%]), and hardware-related infection (3 patients [1.1%]). Mean LOS for all 284 patients was 1.19 ± 1.29 days (awake: 1.06 ± 0.46 days; asleep: 1.30 ± 1.67 days; p = 0.08). Overall, the 30-day readmission rate was 1.4% (1 awake patient, 3 asleep patients). There were no significant differences in complications, LOS, and 30-day readmissions between awake and asleep groups. CONCLUSIONS Both awake and asleep DBS can be performed safely with low complication rates. The authors found no significant differences between the 2 procedure groups in adverse events, inpatient LOS, and 30-day readmission rates.
O ver the past 30 years, deep brain stimulation (DBS) has evolved into a mainstream therapy for patients with Parkinson's disease (PD) that is supported by Level 1 evidence. 5,6,25,31,32 The clinical efficacy of DBS depends on appropriate lead placement within the targeted structure. 3,7,20,22 obJective Recent studies show that deep brain stimulation can be performed safely and accurately without microelectrode recording or test stimulation but with the patient under general anesthesia. The procedure couples techniques for direct anatomical targeting on MRI with intraoperative imaging to verify stereotactic accuracy. However, few authors have examined the clinical outcomes of Parkinson's disease (PD) patients after this procedure. The purpose of this study was to evaluate PD outcomes following "asleep" deep brain stimulation in the globus pallidus internus (GPi). methods The authors prospectively examined all consecutive patients with advanced PD who underwent bilateral GPi electrode placement while under general anesthesia. Intraoperative CT was used to assess lead placement accuracy. The primary outcome measure was the change in the off-medication Unified Parkinson's Disease Rating Scale motor score 6 months after surgery. Secondary outcomes included effects on the 39-Item Parkinson's Disease Questionnaire (PDQ-39) scores, on-medication motor scores, and levodopa equivalent daily dose. Lead locations, active contact sites, stimulation parameters, and adverse events were documented. results Thirty-five patients (24 males, 11 females) had a mean age of 61 years at lead implantation. The mean radial error off plan was 0.8 mm. Mean coordinates for the active contact were 21.4 mm lateral, 4.7 mm anterior, and 0.4 mm superior to the midcommissural point. The mean off-medication motor score improved from 48.4 at baseline to 28.9 (40.3% improvement) at 6 months (p < 0.001). The PDQ-39 scores improved (50.3 vs 42.0; p = 0.03), and the levodopa equivalent daily dose was reduced (1207 vs 1035 mg; p = 0.004). There were no significant adverse events. coNclusioNs Globus pallidus internus leads placed with the patient under general anesthesia by using direct anatomical targeting resulted in significantly improved outcomes as measured by the improvement in the off-medication motor score at 6 months after surgery.Clinical trial registration no.: NCT01997398 (clinicaltrials.gov)
OBJECT Deep brain stimulation (DBS) performed under general anesthesia ("asleep" DBS) has not been previously reported for essential tremor. This is in part due to the inability to visualize the target (the ventral intermediate nucleus [VIM]) on MRI. The authors evaluate the efficacy of this asleep technique in treating essential tremor by indirect VIM targeting. METHODS The authors retrospectively reviewed consecutive cases of initial DBS for essential tremor performed by a single surgeon. DBS was performed with patients awake (n = 40, intraoperative test stimulation without microelectrode recording) or asleep (n = 17, under general anesthesia). Targeting proceeded with standardized anatomical coordinates on preoperative MRI. Intraoperative CT was used for stereotactic registration and lead position confirmation. Functional outcomes were evaluated with pre- and postoperative Bain and Findley Tremor Activities of Daily Living scores. RESULTS A total of 29 leads were placed in asleep patients, and 60 were placed in awake patients. Bain and Findley Tremor Activities of Daily Living Questionnaire scores were not significantly different preoperatively for awake versus asleep cohorts (p = 0.2). The percentage of postoperative improvement was not significantly different between asleep (48.6%) and awake (45.5%) cohorts (p = 0.35). Euclidean error (mm) was higher for awake versus asleep patients (1.7 ± 0.8 vs 1.2 ± 0.4, p = 0.01), and radial error (mm) trended higherfor awake versus asleep patients (1.3 ± 0.8 vs 0.9 ± 0.5, p = 0.06). There were no perioperative complications. CONCLUSIONS In the authors' initial experience, asleep VIM DBS for essential tremor without intraoperative test stimulation can be performed safely and effectively.
Background: Deep brain stimulation (DBS) hardware infection is a serious complication, often resulting in multiple hardware salvage attempts, hospitalizations, and long-term antibiotic therapy. Objectives: We aimed to quantify the costs of DBS hardware-related infections in patients undergoing eventual device explantation. Methods: Of 362 patients who underwent 530 electrode placements (1 January 2010 to 30 December 2014), 16 (4.4%) had at least 2 hardware salvage procedures. Most (n = 15 [93.8%]) required complete explantation due to recurrent infection. Financial data (itemized hospital and physician costs) were available for 13 patients and these were analyzed along with the demographic data. Results: Each patient underwent 1-5 salvage procedures (mean 2.5 ± 1.4; median 2). The mean total cost for a patient undergoing the median number of revisions (n = 2), device explantation, and subsequent reimplantation after infection clearance was USD 75,505; just over half this cost (54.2% [USD 40,960]) was attributable to reimplantation, and nearly one-third (28.9% [USD 21,816]) was attributable to hardware salvage procedures. Operating-room costs were the highest cost category for hardware revision and explantation. Medical and surgical supplies accounted for the highest reimplantation cost. Conclusions: DBS infection incurs significant health care costs associated with hardware salvage attempts, explantation, and reimplantation. The highest cost categories are operating-room services and medical and surgical supplies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.