High fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leadingedge systems, currently referred to as pre-Exascale systems, based on increasingly complex architectures. In this paper, we present the approach implemented in the computational mechanics code Alya. We describe in detail the parallelization strategy implemented to fully exploit the different levels of parallelism, together with a novel co-execution method for the efficient utilization of heterogeneous CPU/GPU architectures. The latter is based on a multi-code co-execution approach with a dynamic load balancing mechanism. The assessment of the performance of all the proposed strategies has been carried out for airplane simulations on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs. * c 2020 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ https://doi.
h i g h l i g h t s• Termo Fluids CFD code has been run on up to 128 ARM-based Mont-Blanc nodes.• An heterogeneous implementation has been developed to occupy the overall system.• A dynamic Tabu search load balance algorithm distributes the workload among devices.• The hybrid approach is up to times faster than the CPU-only version of the code.• Mont-Blanc nodes are 41% more energy efficient than Minotauro hybrid nodes.
t r a c tSince 2011, the European project Mont-Blanc has been focused on enabling ARM-based technology for HPC, developing both hardware platforms and system software. The latest Mont-Blanc prototypes use system-on-chip (SoC) devices that combine a CPU and a GPU sharing a common main memory. Specific developments of parallel computing software and well-suited implementation approaches are of crucial importance for such a heterogeneous architecture in order to efficiently exploit its potential. This paper is devoted to the optimizations carried out in the TermoFluids CFD code to efficiently run it on the Mont-Blanc system. The underlying numerical method is based on an unstructured finite-volume discretization of the Navier-Stokes equations for the numerical simulation of incompressible turbulent flows. It is implemented using a portable and modular operational approach based on a minimal set of linear algebra operations. An architecture-specific heterogeneous multilevel MPI+OpenMP+OpenCL implementation of such kernels is proposed. It includes optimizations of the storage formats, dynamic load balancing between the CPU and GPU devices and hiding of communication overheads by overlapping computations and data transfers. A detailed performance study shows time reductions of up to 2.1× on the kernels' execution with the new heterogeneous implementation, its scalability on up to 128 MontBlanc nodes and the energy savings (around 40%) achieved with the Mont-Blanc system versus the highend hybrid supercomputer MinoTauro.
Nowadays HPC systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for DNS and LES of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the non-linear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.