Development of ceramic pigments with controlled particle sizes below 1 µm is essential for the preparation of ceramic inks used in inkjet digital decoration that is currently being applied in the ceramics sector. A black ceramic pigment based on NiCoCrFe composition has been prepared using thermal decomposition of hydrotalcite-like compounds. The stoichiometry ratio between different cations was studied to obtain the blackest pigment, giving Ni0,5Co0,5CrFeO4 the better cation ratio, also the thermal treatment, comparing traditional firing in an electric furnace with microwave treatment. Samples have been characterized by X-ray diffraction, Scanning Electron Microscopy and Lab colour measurement. Microwave treatment showed the best way to obtain a pigment with spinel-type structure and a homogeneous size distribution near to 150 nm, with a high intensity and colorimetric data, reducing drastically the temperature and energy consumption to obtain a black ceramic pigment suitable to be utilized in digital ceramic inks.
In this study, a new red ceramic pigment has been developed within a perovskite structure, and microwave heat treatments have been applied. Those red ceramic pigments within the YAlO3 system doped with chromium with the nominal composition Y0.98Al0.98Cr0.04O3 were synthesized by traditional routes and alternative methods like coprecipitation. Also, heat treatment has been studied comparing a traditional electric and microwave kiln. Different flux agents have been incorporated to improve the synthesis reaction. Prepared pigments have been characterized by X-ray diffraction (XRD) as having a predominant phase of perovskite structure, which is responsible for the red shade, and a minority garnet phase that causes more brown colorations. Studies by Ultraviolet-Visible spectroscopy gave rise to a series of absorption bands that indicate the presence of Cr(III) in the octahedral position corresponding to perovskite and Cr(IV) corresponding to garnet in both the octahedral and tetrahedral positions. The perovskite phase is favored with the use of flux mix, corroborating the UV-visible results and being more pronounced in traditional high temperature thermal treatments. The coprecipitation route has been studied to increase the reactivity of the particles given their nanometric size; however, this reactivity favors a greater appearance of undesirable garnet phases with both types of flux. Scanning Electron Microscopy (SEM) micrographs offer information obtained from the secondary electrons of predominantly cubic crystalline phases with sizes between 1 µm and 2 µm in pigments synthesized via the traditional method and sizes less than 1µm together with the glassy phase in pigments synthesized via coprecipitation. Microwave thermal treatments have been studied, obtaining pigments with a majority structure of perovskite and garnet at lower temperatures and relatively short synthesis times. The feasibility of use in porous single-fired ceramic glazes has been studied, whose chromatic coordinates have been collected using an Ultraviolet-Visible Spectrophotometer based on the CIEL*a*b* system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.