BackgroundAnnelids exhibit remarkable postembryonic developmental abilities. Most annelids grow during their whole life by adding segments through the action of a segment addition zone (SAZ) located in front of the pygidium. In addition, they show an outstanding ability to regenerate their bodies. Experimental evidence and field observations show that many annelids are able to regenerate their posterior bodies, while anterior regeneration is often limited or absent. Syllidae, for instance, usually show high abilities of posterior regeneration, although anterior regeneration varies across species. Some syllids are able to partially restore the anterior end, while others regenerate all lost anterior body after bisection. Here, we used comparative transcriptomics to detect changes in the gene expression profiles during anterior regeneration, posterior regeneration and regular growth of two syllid species: Sphaerosyllis hystrix and Syllis gracilis; which exhibit limited and complete anterior regeneration, respectively.ResultsWe detected a high number of genes with differential expression: 4771 genes in S. hystrix (limited anterior regeneration) and 1997 genes in S. gracilis (complete anterior regeneration). For both species, the comparative transcriptomic analysis showed that gene expression during posterior regeneration and regular growth was very similar, whereas anterior regeneration was characterized by up-regulation of several genes. Among the up-regulated genes, we identified putative homologs of regeneration-related genes associated to cellular proliferation, nervous system development, establishment of body axis, and stem-cellness; such as rup and JNK (in S. hystrix); and glutamine synthetase, elav, slit, Hox genes, β-catenin and PL10 (in S. gracilis).ConclusionsPosterior regeneration and regular growth show no significant differences in gene expression in the herein investigated syllids. However, anterior regeneration is associated with a clear change in terms of gene expression in both species. Our comparative transcriptomic analysis was able to detect differential expression of some regeneration-related genes, suggesting that syllids share some features of the regenerative mechanisms already known for other annelids and invertebrates.
Although model species have proven to be crucial for developmental biology, the evo-devo approach requires a broader picture across phylogeny. Herein, we try to expand the range of studied annelids by presenting a transcriptome of Typosyllis antoni as a tool for the study of developmental and evolutionary processes in Syllidae. Moreover, we provide homologs of the stem-cell markers vasa, piwi, and nanos, and investigate their expression patterns in gamete-producing individuals for the first time in this group. We found no expression in females, while there is a distinct expression pattern in males. Based on this data, we argue that spermatogenesis starts in the gonads and finishes in the coelomic cavity, and it occurs simultaneously in a large number of segments. Surprisingly, no expression of the stem-cell markers was found in the segment addition zone of these reproducing animals (stolonizing). Preliminary explanations like a lack of growth during stolonization, or the absence of a common genetic program between germ and somatic stem cells, are discussed. Finally, no reservoir of primordial cells has been detected, suggesting a possible epigenic origin of the Primordial Germ Cells of this species, though this hypothesis needs to be further investigated.
The sponge‐dwelling Syllidae Ramisyllis multicaudata and Syllis ramosa are the only annelid species for which a branched body with one head and multiple posterior ends is known. In these species, the head is located deep within the sponge, and the branches extend through the canal system of their host. The morphology of these creatures has captivated annelid biologists since they were first discovered in the late XIXth century, and their external characteristics have been well documented. However, how their branched bodies fit within their symbiotic host sponges and how branches translate into internal anatomy has not been documented before. These features are crucially relevant for understanding the body of these animals, and therefore, the aim of this study was to investigate these aspects. In order to assess these questions, live observation, as wells as histology, immunohistochemistry, micro‐computed tomography, and transmission electron microscopy techniques were used on specimens of R. multicaudata. By using these techniques, we show that the complex body of R. multicaudata specimens extends greatly through the canal system of their host sponges. We demonstrate that iterative external bifurcation of the body is accompanied by the bifurcation of the longitudinal organ systems that are characteristic of annelids. Additionally, we also highlight that the bifurcation process leaves an unmistakable fingerprint in the form of newly‐described “muscle bridges.” These structures theoretically allow one to distinguish original and derived branches at each bifurcation. Last, we characterize some of the internal anatomical features of the stolons (reproductive units) of R. multicaudata, particularly their nervous system. Here, we provide the first study of the internal anatomy of a branched annelid. This information is not only crucial to deepen our understanding of these animals and their biology, but it will also be key to inform future studies that try to explain how this morphology evolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.