In many conspecific trees of >50 species highly synchronous bud break with low inter-annual variation was observed during the late dry season, around the spring equinox, in semideciduous tropical forests of Argentina, Costa Rica, Java and Thailand and in tropical savannas of Central Brazil. Bud break was 6 months out of phase between the northern and southern hemispheres and started about 1 month earlier in the subtropics than at lower latitudes. These observations indicate that "spring flushing", i.e., synchronous bud break around the spring equinox and weeks before the first rains of the wet season, is induced by an increase in photoperiod of 30 min or less. Spring flushing is common in semideciduous forests characterized by a 4-6 month dry season and annual rainfall of 800-1,500 mm, but rare in neotropical forests with a shorter dry season or lower annual precipitation. Establishment of new foliage shortly before the wet growing season is likely to optimize photosynthetic gain in tropical forests with a relatively short growing season.
Tropical stem-succulent trees store large quantities of water in their trunks yet remain leafless during the early and mid dry season. In contrast to most other tropical trees, bud break of vegetative buds is not induced in fully hydrated stem succulents between the winter solstice and the spring equinox by leaf abscission, abnormal rain showers or irrigation. Vegetative buds of leafless trees are therefore in a state of endo-dormancy similar to that of temperate perennial plants during early winter. Highly synchronous bud break regularly occurs soon after the spring equinox, often weeks before the first rainfalls of the wet season. These observations suggested that endo-dormancy and bud break might be induced by declining and increasing photoperiods after the autumn and spring equinoxes, respectively. In phenological field observations, we confirmed highly synchronous bud break after the spring equinox in many trees of five stem-succulent species in the northern and southern hemispheres. Shoot growth of potted saplings of Plumeria rubra L. was arrested by a decline in day length below 12 h after the autumn equinox, but continued in saplings maintained in a 13-h photoperiod. Conversely, exposure to a 13-h photoperiod induced bud break of dormant apical buds in saplings and cuttings in January, whereas plants maintained in the natural day length of < 11.7 h remained dormant. Photoperiodic control of endo-dormancy of vegetative buds in stem succulents is thus supported by field observations and experimental variation of the photoperiod. At low latitudes, where annual variation of day length is less than 1 h, bud dormancy is induced and broken by variations in photoperiod of less than 30 min.
The control of vegetative phenology in tropical trees is not well understood. In dry forest trees, leaf abscission may be enhanced by advanced leaf age, increasing water stress, or declining photoperiod. Normally, it is impossible to dissect the effects of each of these variables because most leaves are shed during the early dry season when day length is near its minimum and leaves are relatively old. The 1997 El‐Niño Southern Oscillation caused a ten‐week long, severe abnormal drought from June to August in the semi‐deciduous forests of Guanacaste, Costa Rica. We monitored the effect of this drought on phenology and water status of trees with young leaves and compared modifications of phenology in trees of different functional types with the pattern observed during the regular dry season. Although deciduous trees at dry sites were severely water stressed (Ψstem < ‐7MPa) and their mesic leaves remained wilted for more than two months, these and all other trees retained all leaves during the abnormal drought. Many trees exchanged leaves three to four months earlier than normal during the wet period after the abnormal drought and shed leaves again during the regular dry season. Irrigation and an exceptional 70 mm rainfall during the mid‐dry season 1998/1999 caused bud break and flushing in all leafless trees except dormant stem succulents. The complex interactions between leaf age and water stress, the principal determinants of leaf abscission, were found to vary widely among trees of different functional types.
During the late rainy season in October 1997 we observed. over a range of >100 km, the highly synchronous emergence of flower buds in several deciduous tree species of the semi-deciduous tropical forest in Guanacaste, Costa Rica. Synchronous flowering soon after the rapid decline in day length around the September equinox and in the absence of any notable climatic cues suggested flower induction by declining photoperiod. By combining field observations and the analysis of flowering herbarium collections, we established highly synchronous flowering periods with low interannual and latitudinal variation predicted for photoperiodic flower induction for more than 25 tree species and a few herbs. We describe morphogenetic changes at the shoot apex of three species during flower induction and the suppression and induction of flowering in several herbaceous species by experimental daylight extension. The combined observations provide strong, mainly indirect evidence for photoperiodic induction of flowering in many tropical tree species. At low latitudes with annual variation in day length of 1 hour, flower induction must be caused by a decline in photoperiod of 30 min or less. This is the first report of photoperiodic control of flowering in trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.