The demand for new tools for mass remote sensing of crops, combined with the open and free availability of satellite imagery, has prompted the development of new methods for crop classification. Because this classification is frequently required to be completed within a specific time frame, performance is also essential. In this work, we propose a new method that creates synthetic images by extracting satellite data at the pixel level, processing all available bands, as well as their data distributed over time considering images from multiple dates. With this approach, data from images of Sentinel-2 are used by a deep convolutional network system, which will extract the necessary information to discern between different types of crops over a year after being trained with data from previous years. Following the proposed methodology, it is possible to classify crops and distinguish between several crop classes while also being computationally low-cost. A software system that implements this method has been used in an area of Extremadura (Spain) as a complementary monitoring tool for the subsidies supported by the Common Agricultural Policy of the European Union.
Satellite crop identification processes are increasingly being used on a large scale, both to verify the crop and to improve production. As it is necessary to study phenological data over a period of time across a large territory, a lot of storage space is needed to save the satellite images and a lot of calculation time to analyse all this information. Sensing periods are usually established based on subjective expert criteria or previous experience. However, this decision may cause several differences when discriminating crop patterns, besides not guaranteeing good precision. These processes would greatly improve if the appropriate time periods could be found systematically using the minimum number of satellite images in the shortest possible time. In this paper, we propose a new methodology to determine a suitable sensing period for crop identification using Sentinel-2 images, applying hill climbing algorithms to the training sets of neural network models. We have used the method successfully in the 2020 Common Agricultural Policy campaign in the Extremadura region, Spain. The article also describes the use of the method in a case on tobacco detection in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.