The aim of the present work is to identify the reactions of the dental organs to the different forces that occur during chewing and the transcendence of the union and contact maintained by the dental tissues. The study used a lower first molar biomodel with a real morphology and morphometry and consisting of the three dental tissues (enamel, dentin, and pulp) each with its mechanical properties. In it, two simulations were carried out, as would the process of chewing a food. One of the simulations considers the contact between the enamel and the dentin, and the other does not take it into account. The results obtained differ significantly between the simulations that consider contact and those that do not, establishing the importance of taking this contact into account. In this way, the theories that establish horizontal and lateral occlusion forces are present during the functional chewing process which are viable to be correct. The case studies carried out present not only the reasons for the failure of enamel but also the failure of the restoration materials used. This reflection will allow the development of more adequate materials, mechanical design of prostheses, implants, and treatment.
This paper presents a synthesis of a spherical parallel manipulator for a shoulder of a seven-degrees-of-freedom prosthetic human arm using a multi-objective optimization. Three design objectives are considered, namely the workspace, the dexterity, and the actuators torques. The parallel manipulator is modelled considering 13 design parameters in an optimization procedure. Due to the non-linearity of the design problem, genetic algorithms are implemented. The outcomes show that a suitable performance of the manipulator is achieved using the proposed optimization.
Deployable mechanisms in CubeSat satellites have many problems with the system that provides the anchor position. The main defect of the traditional deployment mechanisms for solar panels in CubeSats is the lack of position system to block the back-driving of the panel when it reaches the final phase of the deployment. This generates spurious oscillations in the panel, affecting the photovoltaic process as well as generating fatigue in the mechanical elements of the mechanism (hinge or pin). In this work, the design, analysis and manufacture of a deployment mechanism for CubeSat solar panels is shown. A finite element method analysis was carried out in a hinge with an integrated blocking system as well as a double torsion spring, which can be used on CubeSats. The outcome shows the layout of the described anchor hinge and the used double-torsion spring, which provides a positive direction torque transfer. Likewise, the performed numerical analyses on the designed system, reduce the weight and optimise the geometry of the mechanism, showing its feasibility as well as the potential applications and further research in the area.
This work used the crack compliance method for the determination of residual stresses in beams subjected to prior straining before the introduction of residual stresses through bending. The paper also introduces a support system that allows free movement of specimens during cutting by electric discharge machining. The experimental testing and verification procedure considered factors such as different materials and strain hardening levels. The results obtained provide a quantitative demonstration of the effect of prior strain hardening on residual stress distribution in beams.
Experimental research on living beings faces several obstacles, which are more than ethical and moral issues. One of the proposed solutions to these situations is the computational modelling of anatomical structures. The present study shows a methodology for obtaining high-biofidelity biomodels, where a novel imagenological technique is used, which applies several CAM/CAD computer programs that allow a better precision for obtaining a biomodel, with highly accurate morphological specifications of the molar and tissues that shape the biomodel. The biomodel developed is the first lower molar subjected to a basic chewing simulation through the application of the finite element method, resulting in a viable model, able to be subjected to various simulations to analyse molar biomechanical characteristics, as well as pathological conditions to evaluate restorative materials and develop treatment plans. When research is focused in medical and dental investigation aspects, numerical analyses could allow the implementation of several tools commonly used by mechanical engineers to provide new answers to old problems in these areas. With this methodology, it is possible to perform high-fidelity models no matter the size of the anatomical structure, nor the complexity of its structure and internal tissues. So, it can be used in any area of medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.