Chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because they guarantee efficiency in the healing process. This polymer has a great potential for the development of a new generation of biomaterials that can be used in regenerative medicine and tissue engineering. The nanocrystalline chitosan (nCh) is a modified form of chitosan prepared by the method of obtaining chitosan salts. It is characterized by having the same special properties of the precursor chitosan as biocompatibility, bioactivity, be non-toxic and biodegradable. The aim of this study was to develop a new method of obtaining nanocrystalline chitosan according to their chemical and physical characterization. The material was characterized by Absorption Spectroscopy in the Infrared Region -with the Fourier transform (FTIR-ATR), scanning electron microscopy, SEM, Nuclear Magnetic Resonance, NMR, Diffraction of X-rays, particle size analysis and the potential Zeta. The results indicated that the process of obtaining nanocrystalline chitosan did not change the structure of the precursor chitosan. The analysis in the FTIR showed the same functional groups of the precursor chitosan. The 1H-NMR spectroscopy was helpful in the analysis of the chitosan samples in a wide range of values to determine the degree of deacetylation (GD). The morphology indicates the homogeneity of the structure and the surface. The X-ray diffraction shows the reduction of crystallinity of QNC, which corresponds to the amorphous structure thereof. The value of the zeta potential of the chitosan acetate (AQ) in acid media (pH 4.43) was 43.6 mV, while the value of QNC (pH 7.3) was 15.4 mV due to its high polydispersity. The variation in particle size of samples and AQ using QNC 0.450 uM mesh filter, indicated the average particle size of 55.52 and 266.0 nm, respectively.
Nature itself uses materials like cellulose to provide the structure of plants, chitin as the exoskeleton of several insects and molluscs, collagen for mechanical support in connective tissues and so on. At present, the socioeconomic situation of the modern world has raised the interest in renewable materials to use in regenerative medicine. The composition of Chitosan and/or Calcium Phosphates are derived from the junction of two or more different materials, containing organic and inorganic materials, including characteristics of both materials like bioactivity and biodegradability and biocompatibility with human tissues.The chemical characteristics of chitosan and nano B-TCP / HAp complex showed that both of the components organic and inorganic exist in the material showing a good stability of the nano-ceramic formation in the chitosan salt solutions. All complex by Zeta-Potential, showing also a new method of preparations nanoparticles of calcium phosphates in chitosan solution from commercial calcium phosphates in micro size. These materials can be used in future for medical applications as a base for scaffolds production and as implants in regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.