Highlights d Lipophilic statins and lipophilic bisphosphonates are potent vaccine adjuvants d Modulation of post-translational protein prenylation confers adjuvanticity d Decreased protein prenylation augments antigen preservation and presentation d Statin-or bisphosphonate-mediated vaccination synergizes with anti-PD1 against cancer
SUMMARYRose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA 3 delayed the process. However, silencing of RhHB1 delayed the ABA-or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA-or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA 3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint.
SummaryPetal cell expansion depends on cell wall metabolism, changes in cell turgor pressure and restructuring of the cytoskeleton, and recovery ability of petal cell expansion is defined as an indicator of dehydration tolerance in flowers. We previously reported that RhNAC2, a development-related NAC domain transcription factor, confers dehydration tolerance through regulating cell wall-related genes in rose petals. Here, we identify RhNAC3, a novel rose SNAC gene, and its expression in petals induced by dehydration, wounding, exogenous ethylene and abscisic acid (ABA). Expression studies in Arabidopsis protoplasts and yeast show that RhNAC3 has transactivation activity along its full length and in the carboxyl-terminal domain. Silencing RhNAC3 in rose petals by virus-induced gene silencing (VIGS) significantly decreased the cell expansion of rose petals under rehydration conditions. In total, 24 of 27 osmotic stress-related genes were down-regulated in RhNAC3-silenced rose petals, while only 4 of 22 cell expansion-related genes were down-regulated. Overexpression of RhNAC3 in Arabidopsis gave improved drought tolerance, with lower water loss of leaves in transgenic plants. Arabidopsis ATH1 microarray analysis showed that RhNAC3 regulated the expression of stressresponsive genes in overexpressing lines, and further analysis revealed that most of the RhNAC3-up-regulated genes were involved in the response to osmotic stress. Comparative analysis revealed that different transcription regulation existed between RhNAC3 and RhNAC2. Taken together, these data indicate that RhNAC3, as a positive regulator, confers dehydration tolerance of rose petals mainly through regulating osmotic adjustment-associated genes.
Cyanine dye-dimethylindole red containing an anionic propylsulfonate substituent and an extending polymethine chain was found to behave as a highly specific red-emitting G-quadruplex probe, especially for parallel G-quadruplex c-myc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.