Urban land use classification is significant for urban development planning. Considering complex environments of urban surface features, traditional semantic segmentation methods are difficult to solve the problems of mixed pixels and limited spatial resolution of images. The subpixel mapping technology is an effective method to solve the above problems in urban land use classification. However, traditional subpixel mapping methods are sensitive to mountain shadow, high-rise building shadow and impermeable surface heterogeneity, resulting in false classification. Therefore, we propose a subpixel mapping method that can reduce the shadow effect. This method uses a multi-index feature fusion strategy to optimize the abundance of the shadow errors in the abundance image, and uses a super-resolution reconstruction neural network model to reconstruct the optimized abundance image for the subpixel mapping of urban land use. Experiments were conducted on sentinel-2 images obtained over Yuelu District of Changsha City, Hunan Province, China. The experimental results show that the method proposed in this article can effectively overcome the influence of building shadows and mountain shadows in urban land cover classification and is superior to traditional subpixel/pixel spatial attraction model, radial basis function, super-resolution subpixel mapping, and other methods in the effect and accuracy of urban land use subpixel mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.