A bidirectional CLLC resonant converter (CLLC-BRC) based on GaN transistors is analyzed and designed in this paper. Similar resonant topologies are listed and commented on, with the CLLC topology showing competitiveness in bidirectional energy transmission. The analysis of the aforementioned converter has been provided, including the reveal of resonant frequencies of the CLLC topology and an improved zero-voltage switching (ZVS) condition with operation principles of the reverse mode and relevant parasitic parameters taken into account. The design methodology of the aforementioned converter based on pulse frequency modulation (PFM) is further discussed in detail. A prototype with a rated power of 400 W and a maximal operating frequency that is larger than 0.5 MHz was built to verify the proposed design methodology. The highest conversion efficiency of the prototype was 97.02% in the forward mode, and it was 95.96% in the reverse mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.