We present space‐ and ground‐based multi‐instrument observations demonstrating the impact of the 2022 Tonga volcanic eruption on dayside equatorial electrodynamics. A strong counter electrojet (CEJ) was observed by Swarm and ground‐based magnetometers on 15 January after the Tonga eruption and during the recovery phase of a moderate geomagnetic storm. Swarm also observed an enhanced equatorial electrojet (EEJ) preceding the CEJ in the previous orbit. The observed EEJ and CEJ exhibited complex spatiotemporal variations. We combine them with the Ionospheric Connection Explorer neutral wind measurements to disentangle the potential mechanisms. Our analysis indicates that the geomagnetic storm had minimal impact; instead, a large‐scale atmospheric disturbance propagating eastward from the Tonga eruption site was the most likely driver for the observed intensification and directional reversal of the equatorial electrojet. The CEJ was associated with strong eastward zonal winds in the E‐region ionosphere, as a direct response to the lower atmosphere forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.