During quasi-static compressive process, the gradient metallic cellular material can be divided into deformed region and undeformed region before the material is compressed compactly. The deformation mode of the gradient metallic cellular material is not the same as that of homogeneous metallic cellular material. Meanwhile, no plateau stress is observed in the crushing stress versus strain curve of the gradient metallic cellular material. A formula of calculating crushing stress of the gradient metallic cellular material is presented. Subsequently, a collision model for protective structures with gradient metallic cellular material is presented to investigate the vibration isolation of the large mass protection under low velocity impact based on Lagrange’s equation of the second kind. The effects of the gradient metallic cellular material on the acceleration peak of inner protected structure are theoretically discussed. And the results show that adopting gradient metallic cellular material instead of homogeneous metallic cellular material with equivalent mass can decrease the peak acceleration value of the inner protected structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.