We calculate the electronic band structures and topological properties of twisted homobilayer transition metal dichalcogenides(t-TMDs), in particular, bilayer MoTe2 and WSe2 based on a low-energy effective continuum model. We systematically show how the twist angle, vertical electric field and pressure modify the band structures of t-TMDs, often accompanied by topological transitions.We find the variation of topological transitions mainly take place in a limited range of parameters. The electric field can efficiently tune the energy of the topmost second valence band to motify the Chern numbers of the topmost three valance bands. The topological property of the topmost first valance band can be modified by electric field and pressure, but doesn’t depend on twist angle. We show the band gap between the topmost second and third valance bands that both change from non-trivial to trivial closes at
κ
−
-point of the moiré Brillouin zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.