Intelligent part‐to‐picker systems are spreading across a broad range of industries as preferred solutions for agile order fulfillment, wherein mobile racks are carried by robots and moved to stations where human pickers can pick items from them. Such systems raise the challenge of designing good work schedules for human pickers; they also give rise to a new class of operational scheduling problems in human–robot coordinated order picking systems. This work studies the problem of finding a suitable robot schedule that takes into account the schedule‐induced fluctuation of the working states of human pickers. A proposed model enables mobile racks with various workloads to be assigned to pickers, and schedule the racks that are assigned to every picker to minimize the expected total picking time. The problem is formulated as a stochastic dynamic program model. An approximate dynamic programming (ADP)‐based branch‐and‐price solution approach is used to solve this problem. The developed model is calibrated using data that were collected from a dominant e‐commerce company in China. Pickers' working state transitions are modeled based on data obtained from this warehouse. Counter‐factual studies demonstrate that the proposed approach can solve a moderately sized problem with 50 racks in under 2 minutes. More importantly, the approach yields high‐quality solutions with picking times that are 10% shorter than the solutions that did not consider schedule‐induced fluctuations of pickers' working states.
Services such as Meituan and Uber Eats have revolutionized the way the customer can find and order from restaurants. Numerous independent restaurants are competing for orders placed by customers via online food ordering platforms. Ordering takeout food on smartphone apps has become more and more prevalent in recent years. There are some operational challenges that takeout food service providers have to deal with, e.g., customer demand fluctuates over time and region. In this sense, the service providers sometimes ignore the fact that some riders may be idle in several periods in regions, while, in contrast, there may be a shortage of riders in other situations. In order to address this problem, we introduce a two-stage model to optimize scheduling of riders for instant food deliveries. A service provider platform expectantly schedules the least quantity of riders to deliver within expected arrival time to satisfy customer demand in different regions and time periods. We introduce a two-stage model that adopts the method of mixed-integer programming (MIP), characterize relevant aspects of the scenario, and propose an optimization algorithm for scheduling riders. We also divide the delivery service region and time into smaller parts in terms of granularity. The large neighborhood search algorithm is validated through numerical experiments and is shown to meet the design objectives. Furthermore, this study reveals that the optimization of rider resource is beneficial to reduce overall cost of the delivery. Takeout food service platforms decide scheduling shifts (start time and duration) of the riders to achieve a service level target at minimum cost. Additional sensitivity analyses, such as the tightness of the order time windows associated with the orders and riders’ familiarity with delivery regions, are also discussed
In view of the dynamic dispersion of e-commerce logistics demand, this paper uses the historical distribution data of logistics companies to study data-driven proactive vehicle routing optimization. First, based on the classic 2E-VRP problem, a single-node/multistage 2E-VRP mathematical model is constructed. Then, a framework for solving the proactive vehicle routing optimization problem is proposed in combination with the characteristics of the proposed model, including four modules: data-driven demand forecasting methods, customer clustering methods, proactive demand quotas and replenishment strategies, and vehicle routing optimization procedure. The significant feature of the proposed solution framework is that the response to dynamic customers is proactive rather than passive. The solution is applied to the distribution practice of a large logistics company in Chongqing. The results show that the proposed method has better dynamic scene adaptability and customer response capabilities in traffic limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.