In this work, the bonding strength of microchips fabricated by thiol-ene free-radical polymerization was characterized in detail by varying the monomeric thiol/allyl composition from the stoichiometric ratio (1:1) up to 100% excess of thiol (2:1) or allyl (1:2) functional groups. Four different thiol-ene to thiol-ene bonding combinations were tested by bonding: (i) two stoichiometric layers, (ii) two layers bearing complementary excess of thiols and allyls, (iii) two layers both bearing excess of thiols, or (iv) two layers both bearing excess of allyls. The results showed that the stiffness of the cross-linked polymer plays the most crucial role regarding the bonding strength. The most rigid polymer layers were obtained by using the stoichiometric composition or an excess of allyls, and thus, the bonding combinations (i) and (iv) withstood the highest pressures (up to the cut-off value of 6 bar). On the other hand, excess of thiol monomers yielded more elastic polymer layers and thus decreased the pressure tolerance for bonding combinations (ii) and (iii). By using monomers with more thiol groups (e.g. tetrathiol versus trithiol), a higher cross-linking ratio, and thus, greater stiffness was obtained. Surface characterization by infrared spectroscopy confirmed that the changes in the monomeric thiol/allyl composition were also reflected in the surface chemistry. The flexibility of being able to bond different types of thiol-enes together allows for tuning of the surface chemistry to yield the desired properties for each application. Here, a capillary electrophoresis separation is performed to demonstrate the attractive properties of stoichiometric thiol-ene microchips.
Rapid and sensitive quantification of protein based biomarkers and drugs is a substantial challenge in diagnostics and biopharmaceutical drug development. Current technologies, such as ELISA, are characterized by being slow (hours), requiring relatively large amounts of sample and being subject to cumbersome and expensive assay development. In this work a new approach for quantification based on changes in diffusivity is presented. The apparent diffusivity of an indicator molecule interacting with the protein of interest is determined by Taylor Dispersion Analysis (TDA) in a hydrodynamic flow system. In the presence of the analyte the apparent diffusivity of the indicator changes due to complexation. This change in diffusivity is used to quantify the analyte. This approach, termed Flow Induced Dispersion Analysis (FIDA), is characterized by being fast (minutes), selective (quantification is possible in a blood plasma matrix), fully automated, and being subject to a simple assay development. FIDA is demonstrated for quantification of the protein Human Serum Albumin (HSA) in human plasma as well as for quantification of an antibody against HSA. The sensitivity of the FIDA assay depends on the indicator-analyte dissociation constant which in favourable cases is in the sub-nanomolar to picomolar range for antibody-antigen interactions.
In this paper, we report a simple and precise method to rapidly replicate master structures for fast microchannel fabrication by double replica moulding of polydimethylsiloxane (PDMS). A PDMS mould was surface-treated by vapour phase deposition of 1H,1H,2H,2Hperfluorodecyltrichlorosilane (FDTS), which resulted in an anti-stiction layer for the improved release after PDMS casting. The deposition of FDTS on an O 2 plasma-activated surface of PDMS produced a reproducible and well-performing anti-stiction monolayer of fluorocarbon, and we used the FDTS-coated moulds as micro-masters for rapid replication of micro-structures, avoiding the necessity to have to use other, more costly and fragile master materials. Our protocol has been shown to reliably fabricate PDMS-based microfluidic devices in a low-cost and efficient manner. The replicas were further employed as micro-contract stamps to fabricate polymer-based waveguides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.