Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20-120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm(-1)) compared with the pure GaN NWs (7.0 V μm(-1)). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.