Herbaspirillum sp. WT00C is a tea-plant-specific endophytic bacterium. A genomic survey revealed an intact pathway for selenocompound metabolism in the genome of this bacterium. When it was cultured with sodium selenate, Herbaspirillum sp. WT00C was able to turn the culture medium to red. Electron microscopy and energy-dispersive X-ray spectroscopy confirmed that Herbaspirillum sp. WT00C reduced selenite (Se 6+ ) to elemental selenium (Se 0 ), and selenium nanoparticles (SeNPs) were secreted outside bacterial cells and grew increasingly larger to form Se-nanospheres and finally crystallized to form selenoflowers. Biochemical assays showed that selenospheres contained proteins but not carbohydrates or lipids. The improvement of selenium enrichment of tea plants by Herbaspirillum sp. WT00C was also tested. After Herbaspirillum sp. WT00C was inoculated into tea seedlings via needle injection and soaking tea-cutting methods, this endophytic bacterium markedly enhanced selenium enrichment of tea. When the tea seedlings inoculated by soaking tea-cutting mode were cultivated in the selenium-containing soils, selenium contents of tea leaves in three experimental groups were more than twofold compared to those of control groups. Our study demonstrates that the endophytic bacterium Herbaspirillum sp. WT00C has the ability to reduce selenate and improve selenium enrichment of tea.
One-dimensional and two-dimensional materials are widely used to compose the conductive network atop soft substrate to form flexible strain sensors for several wearable electronic applications. However, limited contact area and layer misplacement hinder the rapid development of flexible strain sensors based on 1D or 2D materials. To overcome these drawbacks above, we proposed a hybrid strategy by combining 1D carbon nanotubes (CNTs) and 2D graphene nanoplatelets (GNPs), and the developed strain sensor based on CNT-GNP hierarchical networks showed remarkable sensitivity and tenability. The strain sensor can be stretched in excess of 50% of its original length, showing high sensitivity (gauge factor 197 at 10% strain) and tenability (recoverable after 50% strain) due to the enhanced resistive behavior upon stretching. Moreover, the GNP-CNT hybrid thin film shows highly reproducible response for more than 1000 loading cycles, exhibiting long-term durability, which could be attributed to the GNPs conductive networks significantly strengthened by the hybridization with CNTs. Human activities such as finger bending and throat swallowing were monitored by the GNP-CNT thin film strain sensor, indicating that the stretchable sensor could lead to promising applications in wearable devices for human motion monitoring.
In many 2D materials reported thus far, the forces confining atoms in a 2D plane are often strong interactions, such as covalent bonding. Herein, the first demonstration that hydrogen (H)-bonding can be utilized to assemble polydiacetylene (a conductive polymer) toward a 2D material, which is stable enough to be free-standing, is shown. The 2D material is well characterized by a large number of techniques (mainly different microscopy techniques). The H-bonding allows splitting of the material into ribbons, which can reassemble, similar to a zipper, leading to the first example of a healable 2D material. Moreover, such technology can easily create 2D, organic, conductive nanowire arrays with sub-2-nm resolution. This material may have potential applications in stretchable electronics and nanowire cross-bar arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.