Proton exchange membranes (PEMs) with excellent durability and working stability are important for PEM fuel cells with extended service life and enhanced reliability. In this study, highly elastic, healable, and durable electrolyte membranes are fabricated by the complexation of poly(urea-urethane), ionic liquids (ILs), and MXene nanosheets (denoted as PU-IL-MX). The resulting PU-IL-MX electrolyte membranes have a tensile strength of ≈3.86 MPa and a strain at break of ≈281.89%. The PU-IL-MX electrolyte membranes can act as high temperature PEMs to conduct protons under an anhydrous condition of the temperatures above 100 °C. Importantly, the ultrahigh density of hydrogen-bond-cross-linked network renders PU-IL-MX membranes excellent IL retention properties. The membranes can maintain more than ≈98% of their original weight and show no decline of proton conductivity after being placed under highly humid conditions of ≈80 °C and relative humidity of ≈85% for 10 days. Moreover, due to the reversibility of hydrogen bonds, the membranes can heal damage under the working conditions of fuel cells to restore their original mechanical properties, proton conductivities, and cell performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.