Recent studies hint that Ginsenoside is involved in cancer prevention and treatment. In this study, we investigated the effect of Ginsenoside Rh2 on drug resistance in human colorectal carcinoma (CRC) cells and its mechanism. The resistance reversion effect of Ginsenoside Rh2 in CRC cells was analyzed using CCK-8 assay. After treating with Ginsenoside Rh2, the cell cycle distribution and cellular apoptosis were analyzed by flow cytometry, cell migration was determined by transwell migration assay, the expression of drug-resistance genes and proteins were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Ginsenoside Rh2 could enhance the cytotoxicity of 5-FU in drug-resistant CRC cells (LoVo/5-FU and HCT-8/5-FU). Treatment with Ginsenoside Rh2 could result in an increase of cell numbers in G0/G1 phase accompanied with a decrease in S-phase, and induced cellular apoptosis in drug-resistant CRC cells. In addition, the migration process and EMT process of drug-resistant CRC cells were suppressed by treatment of Ginsenoside Rh2. Compared to control group, expression of drug-resistance genes, such as MRP1, MDR1, LRP and GST, were negatively correlated to Ginsenoside Rh2. All these results indicated that Ginsenoside Rh2 could effectively reverse drug resistance in human colorectal carcinoma cell and its mechanism involved the prevention of cellular proliferation and migration, the promotion of cellular apoptosis and the alteration of drug-resistance genes, which suggested that Ginsenoside Rh2 may act as a promising candidate for drug resistance in human colorectal carcinoma chemotherapy.
In order to reduce the environmental pollutions and develop a new type construction material with super lightweight and high strength, we did some fundamental studies on the mechanical behaviors. The three kinds of experimental samples were made of fly-ash and full hard polyurethane, whose special mix-ratio and producing methods are described in this investigation. The static mechanical characteristics were discovered in the three kinds of material tests, namely the compression test, the bend test, and the cleavage test. The mechanical behaviors of this new material are also compared with that of concrete in the investigation. The main results obtained in the study are : 1) the new material can be made of fly-ash and full hard urethane, 2) stress-strain relations are discovered in the tests, and 3) the new material can be used not only as reinforcement of steel structural system for seismic design, but also as expansion device for highway bridge, due to its large capacities of transformation, remarkable lightweight and high strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.