To afford chiral polyisocyanides with thermoresponsiveness may open new gates to enhance their functionality and to broaden their applications. Herein, we report the synthesis of a series of novel polyisocyanides carrying oligoethylene glycols (OEGs) modified dipeptides as the pendent groups. These polyisocyanides not only show different chiroptical properties but also possess characteristic thermoresponsive behavior. The corresponding monomers carrying different OEG units in the periphery are water-soluble, thus allowing their polymerization feasible in aqueous medium with NiCl 2 as the catalyst. For comparison, polyisocyanides were also prepared in organic solvents, such as dichloromethane and tetrahydrofuran. The effects of solvent and polymerization temperature as well as chemical structures of the pendants on the chiroptical properties of the resulting polymers were examined. The characteristic thermoresponsive behavior of these chiral polymers was investigated by 1 H NMR spectroscopy and turbidity measurements using UV/vis spectroscopy. The thermally induced aggregation processes were also followed by dynamic light scattering. It was found that the phase transition temperatures of these polymers were significantly influenced not only by the overall hydrophilicity but also by their secondary structures.
The synthesis and thermoresponsive behavior of two structural novel comblike polymers are presented, which are constituted by polymethacrylates main chain with dendritic oligoethylene glycol (OEG) side groups spaced with a linear hydrophobic alkyl [PG1(A)] or hydrophilic OEG unit [PG1(G)]. The design of this comblike architecture is to retain the unique thermoresponsive behavior of OEG-based dendritic polymers and, on the other side, to eliminate the tremendous synthesis effort for the dendronized polymer analogues. Their thermoresponsive behavior was investigated with UV/vis and temperature-varied 1H NMR spectroscopy to determine their apparent LCSTs and follow chain dehydration process, respectively. These polymers show sharp and fast transitions with small hystereses. The phase transition temperatures are located in between 27 and 34 °C, which is in the vicinity of physiological temperature, and these transition temperatures are independent of polymer concentration. The thermoresponsiveness of these polymers is also compared with the corresponding macromonomers as well as the densely packed dendronized polymer analogues reported previously, focusing on chemical structure and architecture effects. It was found that the more hydrophobic polymer PG1(A) could form denser aggregates than that of the more hydrophilic polymer PG1(G). On the basis of the exceptional thermoresponsive behavior of these comblike polymers, this architecture is utilized for fabricating polymer sensors. Random copolymerization of the macromonomers with the monomer bearing solvatochromic dye moiety (Disperse Red 1) affords the thermoresponsive copolymers which act as sensitive dual-sensors for both temperature and pH value.
Chiral polymers with simple chemical structures and high helical conformation stabilities are important for their applications as chiral supports and asymmetrical catalysts. We report herein the synthesis of a series of aliphatic polyisocyanides carrying proline pendants of different chiralities, and an investigation of the effects of the chemical structures of these pendants on the chiroptical properties of the polymers. The configuration of the chiral center at the 4-position of the proline pendants was changed from S to R to check its effect on the handedness of the helical conformation. To examine the effects of steric hindrance on the stabilities of the helical conformation for these aliphatic representatives, proline pendants with various substituents at both the carboxyl and amine terminals were designed. To further examine the steric effects of the proline pendants, aromatic counterparts were also prepared. In the latter case, the effects of hydrogen bonds between pendant units on the enhancement and stabilities of the helical conformation were investigated by switching from the ester to an amide linkage. The Cotton effects and signal intensities of both aliphatic and aromatic polyisocyanides from circular dichroism spectroscopy were compared based on the bulkiness of the pendant groups, solvent polarities, and solution temperatures. It was found that highly stable helical conformations of polyisocyanides could be imposed by small bulky monoproline pendants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.