Abstract-Pattern lock is widely used as a mechanism for authentication and authorization on Android devices. This paper presents a novel video-based attack to reconstruct Android lock patterns from video footage filmed using a mobile phone camera. Unlike prior attacks on pattern lock, our approach does not require the video to capture any content displayed on the screen. Instead, we employ a computer vision algorithm to track the fingertip movements to infer the pattern. Using the geometry information extracted from the tracked fingertip motions, our approach is able to accurately identify a small number of (often one) candidate patterns to be tested by an adversary. We thoroughly evaluated our approach using 120 unique patterns collected from 215 independent users, by applying it to reconstruct patterns from video footage filmed using smartphone cameras. Experimental results show that our approach can break over 95% of the patterns in five attempts before the device is automatically locked by the Android operating system. We discovered that, in contrast to many people's belief, complex patterns do not offer stronger protection under our attacking scenarios. This is demonstrated by the fact that we are able to break all but one complex patterns (with a 97.5% success rate) as opposed to 60% of the simple patterns in the first attempt. Since our threat model is common in day-to-day life, this paper calls for the community to revisit the risks of using Android pattern lock to protect sensitive information.
Pattern lock is widely used for identiication and authentication on Android devices. This article presents a novel video-based side channel attack that can reconstruct Android locking patterns from video footage ilmed using a smartphone. As a departure from previous attacks on pattern lock, this new attack does not require the camera to capture any content displayed on the screen. Instead, it employs a computer vision algorithm to track the ingertip movement trajectory to infer the pattern. Using the geometry information extracted from the tracked ingertip motions, the method can accurately infer a small number of (often one) candidate patterns to be tested by an attacker. We conduct extensive experiments to evaluate our approach using 120 unique patterns collected from 215 independent users. Experimental results show that the proposed attack can reconstruct over 95% of the patterns in ive attempts. We discovered that, in contrast to most people's belief, complex patterns do not ofer stronger protection under our attacking scenarios. This is demonstrated by the fact that we are able to break all but one complex patterns (with a 97.5% success rate) as opposed to 60% of the simple patterns in the irst attempt. We demonstrate that this video-side channel is a serious concern for not only graphical locking patterns but also PIN-based passwords, as algorithms and analysis developed from the attack can be easily adapted to target PIN-based passwords. As a countermeasure, we propose to change the way the Android locking pattern is constructed and used. We show that our proposal can successfully defeat this video-based attack. We hope the results of this article can encourage the community to revisit the design and practical use of Android pattern lock.
text captcha schemes. We hope the results of our work can encourage the community to revisit the design and practical use of text captchas.
Deep learning is emerging as a promising technique for building predictive models to support code-related tasks like performance optimization and code vulnerability detection. One of the critical aspects of building a successful predictive model is having the right representation to characterize the model input for the given task. Existing approaches in the area typically treat the program structure as a sequential sequence but fail to capitalize on the rich semantics of data and control flow information, for which graphs are a proven representation structure. We present Poem 1 , a novel framework that automatically learns useful code representations from graph-based program structures. At the core of Poem is a graph neural network (GNN) that is specially designed for capturing the syntax and semantic information from the program abstract syntax tree and the control and data flow graph. As a departure from existing GNN-based code modeling techniques, our network simultaneously learns over multiple relations of a program graph. This capability enables the learning framework to distinguish and reason about the diverse code relationships, be it a data or a control flow or any other relationships that may be important for the downstream processing task. We apply Poem to four representative tasks that require a strong ability to reason about the program structure: heterogeneous device mapping, parallel thread coarsening, loop vectorization and code vulnerability detection. We evaluate Poem on programs written in OpenCL, C, Java and Swift, and compare it against nine learningbased methods. Experimental results show that Poem consistently outperforms all competing methods across evaluation settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.