Drug-resistant superbugs pose a huge threat to human health. Infections by Enterobacteriaceae producing metallo-β-lactamases (MBLs), e.g., New Delhi metallo-β-lactamase 1 (NDM-1) are very difficult to treat. Development of effective MBL inhibitors to revive the efficacy of existing antibiotics is highly desirable. However, such inhibitors are not clinically available till now. Here we show that an anti-Helicobacter pylori drug, colloidal bismuth subcitrate (CBS), and related Bi(III) compounds irreversibly inhibit different types of MBLs via the mechanism, with one Bi(III) displacing two Zn(II) ions as revealed by X-ray crystallography, leading to the release of Zn(II) cofactors. CBS restores meropenem (MER) efficacy against MBL-positive bacteria in vitro, and in mice infection model, importantly, also slows down the development of higher-level resistance in NDM-1-positive bacteria. This study demonstrates a high potential of Bi(III) compounds as the first broad-spectrum B1 MBL inhibitors to treat MBL-positive bacterial infection in conjunction with existing carbapenems.
The newly identified mobile colistin resistant gene (mcr-1) rapidly spread among different bacterial strains and confers colistin resistance to its host, which has become a global concern. Based on sequence alignment, MCR-1 should be a phosphoethanolamine transferase, members of the YhjW/YjdB/YijP superfamily and catalyze the addition of phosphoethanolamine to lipid A, which needs to be validated experimentally. Here we report the first high-resolution crystal structure of the C-terminal catalytic domain of MCR-1 (MCR-1C) in its native state. The active pocket of native MCR-1C depicts unphosphorylated nucleophilic residue Thr285 in coordination with two Zinc ions and water molecules. A flexible adjacent active site loop (aa: Lys348-365) pose an open conformation compared to its structural homologues, suggesting of an open substrate entry channel. Taken together, this structure sets ground for further study of substrate binding and MCR-1 catalytic mechanism in development of potential therapeutic agents.
β-Lactam antibiotics are the mainstay for the treatment of bacterial infections. However, elevated resistance to these antibiotics mediated by metallo-β-lactamases (MBLs) has become a global concern. New Delhi metallo-β-lactamase-1 (NDM-1), a newly added member of the MBL family that can hydrolyze almost all β-lactam antibiotics, has rapidly spread all over the world and poses serious clinical threats. Broad-spectrum and mechanism-based inhibitors against all MBLs are highly desired, but the differential mechanisms of MBLs toward different antibiotics pose a great challenge. To facilitate the design of mechanism-based inhibitors, we investigated the active-site conformational changes of NDM-1 through the determination of a series of 15 high-resolution crystal structures in native form and in complex with products and by using biochemical and biophysical studies, site-directed mutagenesis, and molecular dynamics computation. The structural studies reveal the consistency of the active-site conformations in NDM-1/product complexes and the fluctuation in native NDM-1 structures. The enzymatic measurements indicate a correlation between enzymatic activity and the active-site fluctuation, with more fluctuation favoring higher activity. This correlation is further validated by structural and enzymatic studies of the Q123G mutant. Our combinational studies suggest that active-site conformational fluctuation promotes the enzymatic activity of NDM-1, which may guide further mechanism studies and inhibitor design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.