WCF(Windows Communication Foundation) ,one of Microsoft's revolutionary products, represents a new step in distributed programming. In this paper, after the concepts of WCF are introduced, its pillars(SOA, interoperability and integration, unification) are discussed and layered architecture is explored, then the difference between WCF and Web services is summarized . Finally, current state of popular technologies is given, and the future importance of WCF is pointed out.
WCF , SOA, interoperability, integration, unification, Web services, distributed developmentI.
With the development of smart grid information physical systems, some of the data processing functions gradually approach the edge layer of end-users. To better realize the energy theft detection function at the edge, we proposed an energy theft detection method based on the power consumption information acquisition system of power enterprises. The method involves the following steps. In the centralized data center, K-means is used to decompose a large amount of data into small data and then input and train neural network parameters to realize feature extraction. We design a neural network named DWMCNN, which can extract features from the day, week, and month and can extract more accurate features. In the edge data center, the random forest (RF) algorithm is used to classify the extracted features. The experimental results show that the clustering method accords with the idea of edge computing-distributed processing and improves the operation speed and that the feature extractor has good convergence performance. In addition, compared with the methods based on various classifiers, this method has higher accuracy and lower computational complexity, which is suitable for the deployment of edge data centers.
More and more microgrid projects are put into operation and completed, and the load data are becoming more and more multidimensional and massive. This requires effective classification of load data. Most of the traditional processing methods are based on neural network to classify the grid data. However, with the development of microgrid, the traditional neural network algorithm is having a hard time meeting the requirement of the classification and operation of massive microgrid data. In this paper, the back propagation neural network (BPNN) algorithm is parallelized based on the traditional reverse neural network algorithm. Multiple algorithms are applied for data learning, for example, the combined application of extreme learning algorithm and simulated annealing algorithm, artificial fish swarm algorithm and other evolutionary algorithms. The input variables in BPNN are optimized in the network training process. After adding the algorithm fitness evaluation function, the combined algorithm of improved back propagation neural network algorithm came out. It is most in line with the real-time data of power grid by means of root mean square error. This result could provide data support and theoretical basis for load management, microgrid optimization, energy storage management and electricity price modeling of microgrid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.