Background: To establish a radiomic approach to identify epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients based on CT images, and to distinguish exon-19 deletion and exon-21 L858R mutation.Methods: Two hundred sixty-three patients who underwent pre-surgical contrast-enhanced CT and molecular testing were included, and randomly divided into the training (80%) and test (20%) cohort.Tumor images were three-dimensionally segmented to extract 1,672 radiomic features. Clinical features (age, gender, and smoking history) were added to build classification models together with radiomic features.Subsequently, the top-10 most relevant features were used to establish classifiers. For the classifying tasks including EGFR mutation, exon-19 deletion, and exon-21 L858R mutation, four logistic regression models were established for each task. Results:The training and test cohort consisted of 210 and 53 patients, respectively. Among the established models, the highest accuracy and sensitivity among the four models were 75.5% (61.7-86.2%) and 92.9% (76.5-99.1%) to classify EGFR mutation, respectively. The highest specificity values were 86.7% (69.3-96.2%) and 70.4% (49.8-86.3%) to classify exon-19 deletion and exon-21 L858R mutation, respectively.Conclusions: CT radiomics can sensitively identify the presence of EGFR mutation, and increase the certainty of distinguishing exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma patients.CT radiomics may become a helpful non-invasive biomarker to select EGFR mutation patients for invasive sampling.
Purpose: To develop a machine learning-derived radiomics approach to simultaneously discriminate epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene (KRAS), Erb-B2 receptor tyrosine kinase 2 (ERBB2), and tumor protein 53 (TP53) genetic mutations in patients with non-small cell lung cancer (NSCLC). Methods: This study included consecutive patients from April 2018 to June 2020 who had histologically confirmed NSCLC, and underwent pre-surgical contrast-enhanced CT and post-surgical next-generation sequencing (NGS) tests to determine the presence of EGFR, KRAS, ERBB2, and TP53 mutations. A dedicated radiomics analysis package extracted 1672 radiomic features in three dimensions. Discriminative models were established using the least absolute shrinkage and selection operator to determine the presence of EGFR, KRAS, ERBB2, and TP53 mutations, based on radiomic features and relevant clinical factors. Results: In 134 patients (63.6 ± 8.9 years), the 20 most relevant radiomic features (13 for KRAS) to mutations were selected to construct models. The areas under the curve (AUCs) of the combined model (radiomic features and relevant clinical factors) for discriminating EGFR, KRAS, ERBB2, and TP53 mutations were 0.78 (95% CI: 0.70–0.86), 0.81 (0.69–0.93), 0.87 (0.78–0.95), and 0.84 (0.78–0.91), respectively. In particular, the specificity to exclude EGFR mutations was 0.96 (0.87–0.99). The sensitivity to determine KRAS, ERBB2, and TP53 mutations ranged from 0.82 (0.69–90) to 0.92 (0.62–0.99). Conclusions: Machine learning-derived 3D radiomics can simultaneously discriminate the presence of EGFR, KRAS, ERBB2, and TP53 mutations in patients with NSCLC. This noninvasive and low-cost approach may be helpful in screening patients before invasive sampling and NGS testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.