Endometrial injury caused by intrauterine surgery often leads to pathophysiological changes in the intrauterine environment, resulting in infertility in women of childbearing age. However, clinical treatment strategies, especially for moderate to severe injuries, often fail to provide satisfactory therapeutic effects and pregnancy outcomes. With the development of reproductive medicine and materials engineering, researchers have developed bioactive hydrogel materials, which can be used as a physical anti-adhesion barrier alone or as functional delivery systems for intrauterine injury treatment by loading stem cells or various active substances. Studies have demonstrated that the biomaterial-based hydrogel delivery system can provide sufficient mechanical support and improve the intrauterine microenvironment, enhance the delivery efficiency of therapeutic agents, prolong intrauterine retention time, and perform efficiently targeted repair compared with ordinary drug therapy or stem cell therapy. It shows the promising application prospects of the hydrogel delivery system in reproductive medicine. Herein, we review the recent advances in endometrial repair methods, focusing on the current application status of biomaterial-based hydrogel delivery systems in intrauterine injury repair, including preparation principles, therapeutic efficacy, repair mechanisms, and current limitations and development perspectives.
Background/Aim: Reduction in serum placental growth factor (PLGF) frequently co-occurs with preeclampsia (PE) and gestational diabetes mellitus (GDM). Recently, we reported that impairment in gestational beta-cell mass growth may result from PE-associated reduction in PLGF and lead to development of GDM. Here, we studied the underlying mechanisms. Methods: We co-cultured primary mouse beta cells with mouse islet endothelial cells (MS1), with or without PLGF. We also cultured beta cells in conditioned media from PLGF-treated MS1. Specific signal-pathway inhibitors were applied to cultured beta cells in conditioned media from PLGF-treated MS1. We analysed beta-cell proliferation by BrdU incorporation. We analysed changes in cell number by a MTT assay. We analysed protein levels of cell-cycle regulators in beta cells by Western blot. Results: PLGF itself failed to induce beta-cell proliferation, but significantly augmented proliferation of beta cells co-cultured with MS1, which resulted in significant increases in cell number. Conditioned media from the PLGF-treated MS1 cells similarly induced beta-cell proliferation, which was abolished by inhibition of PI3k/Akt signalling, but not by inhibition of either ERK/MAPK or JNK signalling. The induction of beta-cell proliferation by PLGF-treated MS1 cells appeared to involve decreases in cell-cycle inhibitors p21 and p27, and increases in cell-cycle activators CDK4 and CyclinD1. Conclusion: Gestational PLGF may target islet endothelial cells to release growth factors that activate PI3k/Akt signalling in beta cells to increase their proliferation. PE-associated reduction in PLGF impairs these processes to result in GDM.
As a serious emergency in 2020, COVID-19 had a great impact on people’s lives. In this paper, short-term and long-term response to emergency supplies needs after the outbreak of COVID-19 in a region is studied. Firstly, a comparative study of different regional resource coordination options in the early stages of COVID-19 is conducted using a multiobjective decision-making approach to arrive at the optimal solution. Then, a system dynamics model is established for the follow-up development of the epidemic, to predict the long-term development trend of the epidemic, and to study the urgency of the needs of different materials in different periods. The results show that time and satisfaction are the two most important indicators in the decision-making of the material deployment programme in the early stages of an outbreak. In the long-term control of the epidemic, the number of patients with minor illnesses generally peaks around 20 days, while the number of patients with severe illnesses generally peaks around 40 days, providing a focus for the supply of supplies at different times in the actual development of the epidemic, in order to better and more effectively control the epidemic and reduce inefficient consumption of supplies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.