The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.