Sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC) are bioactive lipid molecules involved in numerous biological processes. We have recently identified ovarian cancer G protein-coupled receptor 1 (OGR1) as a specific and high affinity receptor for SPC, and G2A as a receptor with high affinity for LPC, but low affinity for SPC. Among G protein-coupled receptors, GPR4 shares highest sequence homology with OGR1 (51%). In this work, we have identified GPR4 as not only another high affinity receptor for SPC, but also a receptor for LPC, albeit of lower affinity. Both Taken together, our data indicate that GPR4 is a receptor with high affinity to SPC and low affinity to LPC, and that multiple cellular functions can be transduced via this receptor.
Sphingosylphosphorylcholine (SPC) is a bioactive lipid that acts as an intracellular and extracellular signalling molecule in numerous biological processes. Many of the cellular actions of SPC are believed to be mediated by the activation of unidentified G-protein-coupled receptors. Here we show that SPC is a high-affinity ligand for an orphan receptor, ovarian cancer G-protein-coupled receptor 1 (OGR1). In OGR1-transfected cells, SPC binds to OGR1 with high affinity (Kd = 33.3 nM) and high specificity and transiently increases intracellular calcium. The specific binding of SPC to OGR1 also activates p42/44 mitogen-activated protein kinases (MAP kinases) and inhibits cell proliferation. In addition, SPC causes internalization of OGR1 in a structurally specific manner.
Objectives
The angiogenic drive in skeletal muscle ischemia remains poorly understood. Innate inflammatory pathways are activated during tissue injury and repair, suggesting that this highly conserved pathway may be involved in ischemia-induced angiogenesis. We hypothesize that one of the endogenous ligands for innate immune signaling, high mobility group box 1 (HMGB1), in combination with autophagic responses to hypoxia or nutrient deprivation plays an important role in angiogenesis.
Methods
Human dermal microvascular endothelial cells (EC) were cultured in normoxia or hypoxia (1% oxygen). Immunocytochemical analysis of HMGB1 subcellular localization, evaluation of tube formation, and Western blot analysis of myotubule light-chain 3 (LC3I) conversion to LC3II, as a marker of autophagy, were conducted. 3-methyladenine (3MA), chloroquine (CQ), or rapamycin were administered to inhibit or promote autophagy, respectively. In vivo, a murine hind-limb ischemia model was performed. Muscle samples were collected at 4 hours to evaluate for nuclear HMGB1 and at 14 days to examine endothelial density. Perfusion recovery in the hind-limbs was calculated by laser Doppler perfusion imaging (LDPI).
Results
Hypoxic EC exhibited reduced nuclear HMGB1 staining compared with normoxic cells (mean fluorescence intensity 186.9 ± 17.1 vs. 236.0 ± 1.6, respectively, P = 0.01) with a concomitant increase in cytosolic staining. HMGB1 treatment of ECs enhanced tube formation, an angiogenic phenotype of ECs. Neutralization of endogenous HMGB1 markedly impaired tube formation and inhibited LC3II formation. Inhibition of autophagy with 3MA or CQ abrogated tube formation while its induction with rapamycin enhanced tubing and promoted HMGB1 translocation. In vivo, ischemic skeletal muscle showed reduced the numbers of HMGB1 positive myocyte nuclei compared with nonischemic muscle (34.9% ± 1.9 vs. 51.7% ± 2.0, respectively, P<0.001). Injection of HMGB1 into ischemic hind-limbs increased perfusion recovery by 21% and increased EC density (49.2 ± 4.1vs. 34.2 ± 3.4 EC/HPF, respectively; p=0.02) at 14 days compared to control treated hind-limbs.
Conclusion
Nuclear release of HMGB1 and autophagy occur in ECs in response to hypoxia or serum depletion. HMGB1 and autophagy are necessary and likely play an interdependent role in promoting the angiogenic behavior of ECs. In vivo, HMGB1 promotes perfusion recovery and increased EC density after ischemic injury. These findings are the first to suggest a possible mechanistic link between autophagy and HMGB1 in EC angiogenic behavior and support the importance of innate immune pathways in angiogenesis.
Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule. It stimulates the growth of some cells, but inhibits the growth of others. In this study, we describe the detection of sub-W WM to W WM concentrations of S1P in the ascitic fluids of patients with ovarian cancer. In ovarian cancer cells cultured in vitro, S1P exhibited a dual effect on growth and/or survival. S1P (10 W WM) induced cell death when cells were in suspension but stimulated cell growth when cells were attached. The calcium-dependent induction of cell death by S1P is apparently associated with its inhibitory effect on cell attachment and cell adhesion. S1P (103 0 W WM) also induced calcium-dependent cell-cell aggregation. z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.