Android applications are developing rapidly across the mobile ecosystem, but Android malware is also emerging in an endless stream. Many researchers have studied the problem of Android malware detection and have put forward theories and methods from different perspectives. Existing research suggests that machine learning is an effective and promising way to detect Android malware. Notwithstanding, there exist reviews that have surveyed different issues related to Android malware detection based on machine learning. We believe our work complements the previous reviews by surveying a wider range of aspects of the topic. This paper presents a comprehensive survey of Android malware detection approaches based on machine learning. We briefly introduce some background on Android applications, including the Android system architecture, security mechanisms, and classification of Android malware. Then, taking machine learning as the focus, we analyze and summarize the research status from key perspectives such as sample acquisition, data preprocessing, feature selection, machine learning models, algorithms, and the evaluation of detection effectiveness. Finally, we assess the future prospects for research into Android malware detection based on machine learning. This review will help academics gain a full picture of Android malware detection based on machine learning. It could then serve as a basis for subsequent researchers to start new work and help to guide research in the field more generally.
As an essential part of Internet of Things (IoT), wireless sensor networks (WSNs) have touched every aspect of our lives, such as health monitoring, environmental monitoring and traffic monitoring. However, due to its openness, wireless sensor networks are vulnerable to various security threats. User authentication, as the first fundamental step to protect systems from various attacks, has attracted much attention. Numerous user authentication protocols armed with formal proof are springing up. Recently, two biometric-based schemes were proposed with confidence to be resistant to the known attacks including offline dictionary attack, impersonation attack and so on. However, after a scrutinization of these two schemes, we found them not secure enough as claimed, and then demonstrated that these schemes suffer from various attacks, such as offline dictionary attack, impersonation attack, no user anonymity, no forward secrecy, etc. Furthermore, we proposed an enhanced scheme to overcome the identified weaknesses, and proved its security via Burrows–Abadi–Needham (BAN) logic and the heuristic analysis. Finally, we compared our scheme with other related schemes, and the results showed the superiority of our scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.