Background and Aims Massive hepatocellular carcinoma (MHCC, a maximum tumor size of at least 10 cm) tends to have a poor prognosis. Therefore, this study aims to construct and validate prognostic nomograms for MHCC. Methods Clinic data of 1292 MHCC patients between 2010 and 2015 were got from the surveillance, epidemiology, and end results (SEER) cancer registration database. The whole set was separated into the training and validation sets at a ratio of 2:1 randomly. Variables, significantly associated with cancer‐specific (CSS) and overall survival (OS) of MHCC were figured out by multivariate Cox regression analysis and were taken to develop nomograms. The concordance index (C‐index), calibration curve, and decision curve analysis (DCA) were taken to validate the predictive abilities and accuracy of the nomograms. Results Race, alpha‐fetoprotein (AFP), grade, combined summary stage, and surgery were identified as independent factors of CSS, and fibrosis score, AFP, grade, combined summary stage, and surgery significantly correlated with OS in the training cohort. They then were taken to construct prognostic nomograms. The constructed model for predicting CSS exhibited satisfactory performance with a C‐index of 0.727 (95% CI: 0.746–0.708) in the training group and 0. 672 (95% CI: 0.703–0.641) in the validation group. Besides, the model for predicting OS of MHCC also showed strong performance both in the training group (C‐index: 0.722, 95% CI: 0.741–0.704) and the validation (C‐index: 0.667, 95% CI: 0.696–0.638) group. All calibration curves and decision curves performed satisfactory predictive accuracy and clinic application values of the nomograms. Conclusion The web‐based nomograms for CSS and OS of MHCC were developed and validated in this study, which prospectively could be tested and may serve as additional tools to assess patient's individualized prognosis and make precise therapeutic selection to improve the poor outcome of MHCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.