Recently, the crustacean female sex hormone (CFSH), which is considered a female-specific hormone, has been shown to play a crucial role in female phenotypes in crustaceans. In this study, two transcripts (Sp-CFSH1 and Sp-CFSH2) encoding the same CFSH precursor were cloned from the mud crab Scylla paramamosain. Homology and phylogenetic analysis showed that CFSHs were homologous to interleukin-17 and highly conserved among brachyuran crabs. PCR analysis revealed that Sp-CFSH was expressed exclusively in the eyestalk ganglion of both prepubertal males and females, and surprisingly, the abundance of Sp-CFSH transcripts detected in the males were not significantly different from that of the females (P > 0.05). In addition, mRNA in situ hybridization showed that Sp-CFSH was localized in the X-organ of the male eyestalk ganglion. During the development of the androgenic gland (AG), the level of Sp-IAG mRNA in AG remained at low levels from stages I to II (early stage) but had a significant increase at stage III (mature stage). In contrast, the level of Sp-CFSH transcripts in the eyestalk ganglion was high in the early stage but extremely low in the mature stage. To investigate the potential function of CFSH in male S. paramamosain, the recombinant protein (∼20 kDa) was expressed in Escherichia coli and was subsequently added to AG explants in vitro. It was demonstrated that recombinant Sp-CFSH protein significantly reduced the expression of Sp-IAG in the AG explants at a concentration of 10−6 M (P < 0.05). In conclusion, our study provides the first piece of evidence that shows CFSH from the eyestalk ganglion acts as a negative regulator inhibiting the development of AG in crustaceans.
Ecological experiments were conducted to examine the effects of seawater containing elevated partial pressure of carbon dioxide (p CO 2 800×10 −6 , 2 000×10 −6 , 5 000×10 −6 and 10 000×10 −6 ) on the survival and reproduction of female Acartia pacifica, Acartia spinicauda, Calanus sinicus and Centropages tenuiremis, which are the dominant copepods in the southern coastal waters of China. The results show that the effects of elevated p CO 2 on the survival rates of copepods were speciesspecific. C. sinicus, which was a macro-copepod, had a higher survival rate (62.01%-71.96%) than the other three species (5.00%-26.67%) during the eight day exposure. The egg production rates of C. sinicus, A. spinicauda and C. tenuiremis were significantly inhibited by the increased p CO 2 and the exposure time duration. There were significantly negative impacts on the egg hatching success of A. spinicauda and C. tenuiremis in the p CO 2 2 000×10 −6 and 10 000×10 −6 groups, and, in addition, the exposure time had noticeably impacts on these rates too. This study indicates that the reproductive performances of copepods were sensitive to elevated p CO 2 , and that the response of different copepod species to acidified seawater was different. Furthermore, the synergistic effects of seawater acidification and climate change or other pollutant stresses on organisms should be given more attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.