The bulk of glucose that is filtered by the renal glomerulus is reabsorbed by the glucose transporters of the proximal convoluted tubular epithelium. However, it has been difficult to investigate this in diseases such as type 2 diabetes because of the inability to isolate primary renal cells from patients without a renal biopsy. We report here a method for the immunomagnetic isolation and novel primary culture of human exfoliated proximal tubular epithelial cells (HEPTECs) from fresh urine. The primary isolates are highly enriched and differentiated and express characteristic proximal tubular phenotypic markers. They continue to express the proximal tubular markers CD13/aminopeptidase-N, sodium glucose cotransporter (SGLT) 2, and alkaline phosphatase through up to six subsequent subcultures in a similar way to human proximal cells isolated from renal biopsies. In a hyperglycemic environment, HEPTECs isolated from patients with type 2 diabetes expressed significantly more SGLT2 and the facilitative glucose transporter GLUT2 than cells from healthy individuals. We also demonstrated a markedly increased renal glucose uptake in HEPTECs isolated from patients with type 2 diabetes compared with healthy control subjects. Our findings indicate for the first time in a human cellular model that increased renal glucose transporter expression and activity is associated with type 2 diabetes. Diabetes 54:3427-3434, 2005
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-dependent transcription factor that belongs to the nuclear receptor family that plays a critical role in adipocyte differentiation and lipid metabolism. Here we report for the first time that PPARgamma is expressed in human renal cortical collecting ducts (CCD), segments of the nephor involved in regulation of sodium and water homeostasis via action of the epithelial sodium channel (ENaC). ENaC activity is regulated by the hormones aldosterone and insulin, primarily through co-ordinate actions on serum and glucocorticoid regulated kinase 1 (SGK1). We show that SGK1 activity is stimulated by treatment of a human CCD cell line with PPARgamma agonists, paralleled by an increase in SGK1 mRNA that is abolished by pretreatment with a specific PPARgamma antagonist, and that this leads to increased levels of cell surface ENaCalpha. Electrophoretic mobility shift assays suggest that these effects are caused by binding of PPARgamma to a specific response element in the SGK1 promoter. Our results identify SGK1 as a target for PPARgamma and suggest a novel role for PPARgamma in regulation of sodium re-absorption in the CCD via stimulation of ENaC activity. This pathway may play a role in sodium retention caused by activation of PPARgamma in man.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.