-The power industry is currently facing many challenges, due to the new environment created by the introduction of smart grid technologies. In particular, the large-scale deployment of electric vehicles (EVs) may have a significant impact on demand for electricity and, thereby, influence generation and transmission system planning. However, it is difficult to deal with uncertainties in EV charging loads using deterministic planning methods. This paper presents a two-stage stochastic decomposition method with Latin-hyper rectangle sampling (LHRS) to solve the integrated generation and transmission planning problem incorporating EV deployment. The probabilistic distribution of EV charging loads is estimated by Latin-hyper rectangle sampling (LHRS) to enhance the computational performance of the proposed method. Numerical results are presented to show the effectiveness of the proposed method.
-During an emergency due to a shortage of power, a load aggregator (LA) can use the demand response operation system to deploy demand response resources (DRRs) through various demand response (DR) programs. This paper introduces the demand response operation system for a load aggregator to manage various demand response resources in a smart grid environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.