Mitochondrial dynamics is crucial for the regulation of cell homeostasis. Our recent findings suggest that hepatitis C virus (HCV) promotes Parkin-mediated elimination of damaged mitochondria (mitophagy). Here we show that HCV perturbs mitochondrial dynamics by promoting mitochondrial fission followed by mitophagy, which attenuates HCV-induced apoptosis. HCV infection stimulated expression of dynamin-related protein 1 (Drp1) and its mitochondrial receptor, mitochondrial fission factor. HCV further induced the phosphorylation of Drp1 (Ser616) and caused its subsequent translocation to the mitochondria, followed by mitophagy. Interference of HCV-induced mitochondrial fission and mitophagy by Drp1 silencing suppressed HCV secretion, with a concomitant decrease in cellular glycolysis and ATP levels, as well as enhanced innate immune signaling. More importantly, silencing Drp1 or Parkin caused significant increase in apoptotic signaling, evidenced by increased cytochrome C release from mitochondria, caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. These results suggest that HCV-induced mitochondrial fission and mitophagy serve to attenuate apoptosis and may contribute to persistent HCV infection.HCV persistence | innate immunity | autophagy H epatitis C virus (HCV) infection often leads to chronic hepatitis that can progress to fibrosis, cirrhosis, and hepatocellular carcinoma (1). HCV is a hepatotropic, noncytopathic (2, 3), single-stranded, positive-sense RNA virus that replicates its RNA genome on the endoplasmic reticulum (ER)-derived membranous structures (4, 5). HCV stimulates lipogenesis, leading to the accumulation of lipid droplets that facilitate virion assembly and maturation (5-8). HCV infection also induces mitochondrial dysfunction via ER and oxidative stress that results in mitochondrial Ca 2+ overload, collapse of mitochondrial transmembrane potential (ΔΨm), elevated levels of reactive oxygen species, and disruption of mitochondrial respiration (9-15). Liver tissues of patients with chronic hepatitis C frequently exhibit traits of mitochondrial injury such as swollen, ruptured, and empty mitochondria (16).Mitochondria are dynamic organelles that constantly undergo fission, fusion, and mitophagy to facilitate mitochondrial quality control, which is crucial for maintaining cell viability and bioenergetics (17). Aberrant mitochondrial dynamics are associated with the pathogenesis of several genetic and neurological disorders, cardiac dysfunctions, cancer, and metabolic diseases such as diabetes and obesity (18). Depending on their physiological and cellular context, the balance between mitochondrial fission and fusion processes modulates the mitochondrial morphology (17). Mitochondrial fission/fragmentation is mediated by recruitment of cytosolic Drp1 to the mitochondria, forming spirals that constrict both the inner and outer mitochondrial membranes (19). The mitochondrial fission is modulated by mitochondrial outer membrane proteins, which include mitochondrial fission 1 (Fis1), mitocho...
Hepatitis C virus (HCV) modulates cellular lipid metabolism to enhance its replication. HCV circulates in the blood in association with lipoproteins. HCV infection is associated with enhanced lipogenesis, reduced secretion and β-oxidation of lipids. HCV-induced imbalance in lipid homeostasis leads to steatosis. Many lipids are crucial for viral life cycle, and inhibitors of cholesterol/fatty acid biosynthetic pathways inhibit viral replication, maturation and secretion. HCV negatively modulates the synthesis and secretion of very low-density lipoproteins (VLDL). The components involved in VLDL assembly are also required for HCV morphogenesis/secretion, suggesting that HCV coopts the VLDL secretory pathway for its own secretion. This review highlights HCV-altered lipid metabolic events that aid in the viral life cycle and ultimately promote liver disease pathogenesis.
Hepatitis C Virus (HCV) induces intracellular events that trigger mitochondrial dysfunction and promote host metabolic alterations. Here, we investigated selective autophagic degradation of mitochondria (mitophagy) in HCV-infected cells. HCV infection stimulated Parkin and PINK1 gene expression, induced perinuclear clustering of mitochondria, and promoted mitochondrial translocation of Parkin, an initial event in mitophagy. Liver tissues from chronic HCV patients also exhibited notable levels of Parkin induction. Using multiple strategies involving confocal and electron microscopy, we demonstrated that HCV-infected cells display greater number of mitophagosomes and mitophagolysosomes compared to uninfected cells. HCV-induced mitophagy was evidenced by the colocalization of LC3 puncta with Parkin-associated mitochondria and lysosomes. Ultrastructural analysis by electron microscopy and immunoelectron microscopy also displayed engulfment of damaged mitochondria in double membrane vesicles in HCV-infected cells. The HCV-induced mitophagy occurred irrespective of genotypic differences. Silencing Parkin and PINK1 hindered HCV replication suggesting the functional relevance of mitophagy in HCV propagation. HCV-mediated decline of mitochondrial complex I enzyme activity was rescued by chemical inhibition of mitophagy or by Parkin silencing. Overall our results suggest that HCV induces Parkin-dependent mitophagy, which may have significant contribution in mitochondrial liver injury associated with chronic hepatitis C.
SUMMARY The role of inflammation in obesity-related pathologies is well established. We investigated the therapeutic potential of LipoxinA4 (LXA4:5(S),6(R),15(S)-trihydroxy-7E,9E,11Z,13E,-eicosatetraenoic acid) and a synthetic 15(R)-Benzo-LXA4-analogue, as interventions in a 3-month high-fat-diet [HFD; 60%fat]-induced obesity model. Obesity caused distinct pathologies, including impaired glucose-tolerance, adipose inflammation, fatty liver and chronic-kidney-disease (CKD). Lipoxins (LXs) attenuated obesity- induced CKD; reducing glomerular expansion, mesangial matrix and urinary H2O2. Furthermore, LXA4 reduced liver weight, serum alanine-aminotransferase and hepatic triglycerides. LXA4 decreased obesity-induced adipose inflammation, attenuating TNF-α and CD11c+ M1-macrophages (MΦs), while restoring CD206+ M2-MΦs and increasing Annexin-1. LXs did not affect renal or hepatic MΦs, suggesting protection occurred via attenuation of adipose inflammation. LXs restored adipose expression of autophagy markers LC3-II and p62. LX-mediated protection was demonstrable in adiponectin−/− mice, suggesting that the mechanism was adiponectin independent. In conclusion, LXs protect against obesity- induced systemic disease and these data support a novel therapeutic paradigm for treating obesity and associated pathologies.
Viruses manipulate cellular machinery and functions to subvert intracellular environment conducive for viral proliferation. They strategically alter functions of the multitasking mitochondria to influence energy production, metabolism, survival, and immune signaling. Mitochondria either occur as heterogeneous population of individual organelles or large interconnected tubular network. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections, and is dynamically maintained by mitochondrial fission and fusion. Mitochondrial dynamics in tandem with mitochondria-selective autophagy ‘mitophagy’ coordinates mitochondrial quality control and homeostasis. Mitochondrial dynamics impacts cellular homeostasis, metabolism, and innate-immune signaling, and thus is a major determinant of the outcome of viral infections. Hepatitis B and C viruses exploit mitochondrial dynamics to ensure cell survival and escape from innate immunity, thereby promoting persistent/chronic viral infection. Herein, we review how mitochondrial dynamics is affected during viral infections and how this complex interplay benefits the viral infectious process and associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.