Intermittent hypoxia is the most common pattern of hypoxic exposure in humans. The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on bone metabolism is not investigated. We examined the effect of CLTIHH on bone metabolism and the role of nitric oxide (NO) in this process. The rats were divided into three groups in this study. The animals in groups I and II have been exposed to CLTIHH. The animals in group II were also treated with nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mm Hg; 5 h/day, 5 days/week, 5 weeks). The group III (control) rats breathed room air in the same environment. At the begining of the experiments, bone mineral density (BMD) of the animals were measured, and blood samples were collected from the tail vein. After the 5-week CLTIHH period, the same measurements were repeated. Parathyroid hormone, calcium, phosphate, bone alkaline phosphatase (b-ALP), NO, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha levels were determined. The cytokines, NO levels, and BMD in CLTIHH-induced rats were higher compared with baseline and control values. The cytokines, b-ALP, and BMD increased while NO levels decreased in the group II compared with baseline values. BMD values of group II were lower than group I but higher than control group. Our results suggested that CLTIHH has positive effects on bone density. Intermittent hypoxia protocols may be developed for treatment and prevention of osteopenia and osteoporosis.
SUMMARY1. With pentobarbitone-anaesthetized dogs, the cranial tracheal arteries have been independently perfused on both sides, to measure vascular resistance. Blood pressure and contractions of tracheal muscle were also measured.2. Capsaicin was injected intravenously to stimulate lung C-fibre receptors. In breathing and in paralysed artificially ventilated dogs it decreased tracheal vascular resistance and blood pressure, and contracted tracheal muscle. The effects were abolished or far smaller after bilateral cervical vagosympathectomy.3. Veratrine was injected intravenously to stimulate slowly adapting pulmonary stretch receptors and cardiac receptors. In breathing and in artificially ventilated dogs it lowered tracheal vascular resistance and blood pressure, and had variable effects on tracheal muscle tone. The vascular effects were prevented by vagotomy.4. Veratrine injected into the left atrium caused similar vascular changes to intravenous administration. The changes were prevented by vagotomy. Veratrine causes a tracheal vasodilatation by action on cardiac receptors. 5. Inflation of the lungs in artificially ventilated dogs, to stimulate slowly adapting pulmonary stretch receptors, had no effect on tracheal vascular resistance but decreased blood pressure and tracheal muscle tone, the latter being prevented by vagotomy.6. Bilateral carotoid arterial occlusion, to decrease the discharge in carotid sinus baroreceptors, had no effect on tracheal vascular resistance but increased blood pressure and contracted tracheal muscle, the last two responses being greatly reduced by cutting the sinus nerves.7. It is concluded that stimulation of lung C-fibre and cardiac receptors causes a reflex tracheal vasodilatation, but that no changes in the tracheal vascular bed occur with stimulation of slowly adapting pulmonary stretch receptors or inhibition of carotid sinus baroreceptors.
Acute hypoxia produces an increase in ventilation. When the hypoxia is sustained, the initial increase in ventilation is followed a decrease in ventilation. The precise mechanism of this decline in ventilation during sustained hypoxia is unknown. Recent studies hypothesized that the accumulation of dopamine in the central nervous system might have a major role in production of hypoxic respiratory depression. The purpose of this study was to examine whether dopamine has an effect on occurance of central ventilatory depression which is seen in acute hypoxia in peripheral chemoreceptors denervated animals. The experiment were conducted in rabbits anesthetized with Na-pentobarbital (25 mg x kg(-1) i.v.). For intracerebroventricular (i.c.v.) injections of dopamine (1 microg) in each animal, canula was placed in left lateral cerebral ventricle by stereotaxic method. Respiratory frequency (f x min(-1)), tidal volume (V(T)) ventilation minute volume (V(E)) and systemic arterial blood pressure (BP) were recorded during air and 3 minutes hypoxic gas mixture (8%O2-92%N2) breathing. I.c.v. administration of dopamine during normoxia decreased V(T), f, V(E) and BP, significantly. When rabbits were injected with an i.c.v. dopamine on hypoxic gas mixture breathing in control animals, there was depression of hypoxic ventilatory responses. After i.c.v. administration of dopamine antagonists haloperidol (0.1 mg) and domperidone (0.07 mg) in chemodenervated rabbits, the significant increases in V(T), V(E) and BP were observed. On the breathing of hypoxic gas mixture of chemodenervated and i.c.v. dopamine antagonists administrated rabbits, hypoxic depression was completely abolished. These results of this study show that accumulation of dopamine in the brain seems to reduce the response of the central control mechanisms to chemoreceptor impulses during normoxia and hypoxia. In conclusion present study suggests important role played by central dopaminergic pathways in the occurence of acute hypoxic ventilatory depression.
Background and objectives: Ischemia–reperfusion (IR) caused by infrarenal abdominal aorta cross-clamping is an important factor in the development of ischemia–reperfusion injury in various distant organs. Materials and Methods: We investigated potential antioxidant/anti-inflammatory effects of thymosin beta 4 (Tβ4) in a rat model of abdominal aortic surgery-induced IR. Tβ4 (10 mg/kg, intravenous (i.v.)) was administered to rats with IR (90-min ischemia, 180-min reperfusion) at two different periods. One group received Tβ4 1 h before ischemia, and the other received 15 min before the reperfusion period. Results: Results were compared to control and non-Tβ4-treated rats with IR. Serum, bronchoalveolar lavage fluid and lung tissue levels of oxidant parameters were higher, while antioxidant levels were lower in the IR group compared to control. IR also increased inflammatory cytokine levels. Tβ4 reverted these parameters in both Tβ4-treated groups compared to the untreated IR group. Conclusions: Since there is no statistical difference between the prescribed results of both Tβ4-treated groups, our study demonstrates that Tβ4 reduced lung oxidative stress and inflammation following IR and prevented lung tissue injury regardless of timing of administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.